DENEY 8 : ANYONLARIN NiTEL ANALIZi

Deneyin Amacı: Bir nümunede belli bazı anyonların bùlunup bulunmadığını araştırmak.

ADLANDIRMA

Genel olarak analiz sonucu maddeleri meydana getiren bileşenlerin neler oldukları(nitelikleri) ve bu bileşenlerin miktarları(nicelikleri) belirlenebilir. Nitelik belirliyen analize "Kalitatif Analiz" veya "Nitel Analiz" denir. Miktarı belirliyen analize ise "Kantitatif Analiz" veya "Nicel Analiz" denir. Bir maddenin kalitatif analizi genelde kantitatif analizinden önce yapılı.

Negatif yüklü iyonlara anyon denir. Tek atomlu anyonların adlandırılması, elementin adının sonuna "-ür" takısı eklenerek yapılır. Anyonları adlandırırken elektrik yükünü veya değerliği belirtmeye gerek yoktur; çünkü tek atomlu anyon oluşturan elementler yalnızca tek bir türde iyon oluştururlar. Halojenlerin oluşturduğu iyonların tümüne halojenür iyonları denir ve bunlar florür $\left(\mathrm{F}^{-}\right)$, korür $\left(\mathrm{Cl}^{-}\right)$, bromür (Br^{-}) ve iyodür $\left(\mathrm{I}^{-}\right)$iyonlarıdır.

Oksoanyonların adları karbonat iyonunda ($\mathrm{CO}_{3}{ }^{2-}$) olduğu gibi, oksijen dışındaki elementin adına "-at" eki takılarak oluşturulur. Fakat bir çok element farklı sayılarda oksijen içeren oksoanyonlar oluştururlar; örneğin azot hem $\mathrm{NO}_{2}{ }^{-}$ve hem de $\mathrm{NO}_{3}{ }^{-}$oluşturur. Bu durumda daha çok sayıda oksijen içeren iyona "-at" eki daha az sayıda oksijen içeren iyona -it eki takılır. Bu nedenle, $\mathrm{NO}_{3}{ }^{-}$nitrat, NO_{2}^{-}nitrit olarak adlandırilir.

Bazı elementler (özellikle halojenler) ikiden fazla oksoanyon oluştururlar. Bu tür oksoanyonların adları, en az sayıda oksijen içeren türler için hipoklorit (ClO^{-})iyonunda olduğu gibi "hipo-" ön takısı ve "-it" son takısı kullanılarak oluşturulur. En çok oksijen atomu içeren oksoanyonların adları ise perklorat (ClO_{4}^{-}) iyonunda olduğu gibi "per-" ön takısı ve "-at" son takısından oluşur. Hipoiyodit (IO^{-}), iyodat (IO_{3}^{-}) ve periyodat(IO_{4}^{-}) anyonlarıda halojenlerin oluşturduğu oksoanyonlarına örnek verilebilir.

Bazı anyonlar $\mathrm{HS}^{-}, \mathrm{HCO}_{3}^{-}$ve $\mathrm{H}_{2} \mathrm{PO}_{4}^{-}$gibi, hidrojen içerirler. Bu tür anyonların adları hidrojen kelimesi ile başlar. Bu nedenle, HCO_{3}^{-}hidrojen karbonat, $\mathrm{H}_{2} \mathrm{PO}_{4}{ }^{-}$dihidrojenfosfat(pirimerfosfat) iyonlarıdır.. Eski sistem adlandırmada, hidrojen atomu içeren anyonlar "bi-" ön takıss ile adlandırılıyordu, bikarbonat iyonunda ($\mathrm{HCO}_{3}{ }^{-}$) olduğu gibi.

GRUPLANDIRMA

Birden çok anyon içeren bir nümunede tek tek her anyonu tanımak için, önce bu anyonları birbirinden ayırmak gerekir. Ayırma için, anyonların belli katyonlarla verdiği tuzların çökme çözünme özelliklerinden yararlanılır. Tuzlarıın çözünürlük özellikleri birbirine benzeyen anyonlar aynı grupta toplanır.

Aşağıdaki çizelgede anyonların grupları ve her grubun ortak özellikleri özetlenmiştir. Cizelge: Anyon Grupları

Grup	Çöktürme özellikleri	$\begin{array}{\|l\|l\|} \hline \begin{array}{l} \text { Anyonların } \\ \text { Formülü } \end{array} \\ \hline \end{array}$		Oluşan çökeleğin Formülü rengi	
1	Nötr veya hafif bazik ortamda $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile kalsiyum tuzları ¢尹̈ker.	$\begin{aligned} & \mathrm{CO}_{3}^{2-} \\ & \mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-} \\ & \mathrm{F}^{-} \\ & \mathrm{SO}_{3}{ }^{2-} \\ & \mathrm{AsO}_{2}^{-} \\ & \mathrm{AsO}^{3-} \\ & \mathrm{PO}_{4}^{3-} \end{aligned}$	karbonat okzalat florür sülfit arsenit arsenat fosfat	CaCO_{3} $\mathrm{CaC}_{2} \mathrm{O}_{4}$ CaF_{2} CaSO $\mathrm{Ca}\left(\mathrm{AsO}_{2}\right)_{2}$ $\mathrm{Ca}\left(\mathrm{AsO}_{4}\right)_{2}$ $\mathrm{Ca}\left(\mathrm{PO}_{4}\right)_{2}$	beyaz beyaz beyaz beyaz beyaz beyaz beyaz
2	Hafif bazik ortamda $\mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile baryum tuzları çöker.	$\begin{aligned} & \mathrm{CrO}_{4}{ }^{2-} \\ & \mathrm{SO}_{4}{ }^{2-} \end{aligned}$	kromat sülfat	BaCrO_{4} BaSO_{4}	sarı beyaz
3	Nötr veya hafif bazik ortamda $\quad \mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile kadmiyum tuzları cöker	$\begin{aligned} & \hline \mathrm{S}^{2-} \\ & \mathrm{Fe}(\mathrm{CN})_{6}{ }^{4}{ }^{4}{ }^{3}(\mathrm{CN})^{3} \end{aligned}$	sülfür ferrosiyanür ferrisiyanür	$\begin{aligned} & \hline \mathrm{CdS} \\ & \mathrm{Cd}_{2} \mathrm{Fe}(\mathrm{CN})_{6} \\ & \mathrm{Cd}_{3}[\mathrm{Fe}(\mathrm{CN}) \end{aligned}$	$\begin{aligned} & \hline \text { sarı } \\ & \text { bej } \\ & {[6]_{2} \text { turuncu }} \end{aligned}$
4	Asidik ortamda $\mathrm{AgCH}_{3} \mathrm{COO}$ çözeltisi ile Gümüş tuzları çöker	$\begin{array}{\|l\|} \hline \mathrm{S}_{2} \mathrm{O}_{3}{ }^{--} \\ \mathrm{SCN}^{-} \\ \mathrm{Cl}^{-} \\ \mathrm{I}^{-} \\ \mathrm{Br}^{-} \\ \hline \end{array}$	tiyosülfat tiyosiyanat klorür iyodür bromür	$\begin{array}{\|l} \hline \mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3} \\ \mathrm{AgSCN} \\ \mathrm{AgCl} \\ \mathrm{AgI} \\ \mathrm{AgBr} \\ \hline \end{array}$	beyaz beyaz beyaz sarı bej
5	Belirli bir çöktürücü yoktur	$\begin{aligned} & \mathrm{ClO}_{3}^{-} \\ & \mathrm{BO}_{2}^{-} \\ & \mathrm{NO}_{2}^{-} \\ & \mathrm{NO}_{3}^{-} \\ & \hline \end{aligned}$	klorat borat nitrit nitrat		

Bugünkü deneylerde, aşağıda belirtilen anyonların tanınma reaksiyonları gözden geçirilecektir.
I. Grup: Karbonat $\left(\mathrm{CO}_{3}{ }^{2-}\right)$, okzalat $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$, sülfit $\left(\mathrm{SO}_{3}{ }^{2-}\right)$ ve fosfat $\left(\mathrm{PO}_{4}{ }^{3-}\right)$
II. Grup: $\mathrm{Kromat}\left(\mathrm{CrO}_{4}{ }^{2-}\right)$ ve sülfat $\left(\mathrm{SO}_{4}{ }^{2-}\right)$
III. Grup: Sülfür(S^{2-}) ve ferrosiyanür $\left(\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}\right)$
IV. Grup: Tiyosülfat $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ ve klorür $\left(\mathrm{Cl}^{-}\right)$
V. Grup: $\operatorname{Nitrit}\left(\mathrm{NO}_{2}^{-}\right)$ve $\operatorname{nitrat}\left(\mathrm{NO}_{3}^{-}\right)$

Anyonlarm Nitel Analizinde Kullanılan Malzemeler

2 Beher $(50 \mathrm{~mL})$	1 Bek	1 Kutu turnusol kağıdı
2 Beher $(250 \mathrm{~mL})$	1 Üçayak	1 Kutu süzgeç kağıdı
10 Deney tüpü $(10 \mathrm{~cm})$	1 Amyant tel	1 Fıřça
4 Santrifüj tüpü	1 Kil üçgen	3 Damlalık
1 Mezür $(10 \mathrm{~mL})$	1 Spor	2 Küçük spatül
1 Pipet $(1 \mathrm{~mL})$	1 Kıskaç	
1 Huni	1 Tahta maşa	
2 Saat camı	2 Tıpa	
10 Baget	1 Piset	

Ayrıca deneyde kullanılmak üzere,

Anyon Analizinde Kullanılan Kimyasal Maddeler

Amonyum asetat, amonyum fosfat, amonyum molibdat, amonyum okzalat, amonyum sülfat, baryum asetat, buzlu asetik asit, demir (III) klorür, demir sülfat, gümüs asetat, gümüş nitrat $\left(\mathrm{AgNO}_{3}\right)$, hidrojen peroksit $\left(\mathrm{H}_{2} \mathrm{O}_{2}\right)$, hidroklorik asit (HCl), kadmiyum asetat $\left(\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right)$, kalsiyum asetat $\left(\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right)$, karbontetraklorür $\left(\mathrm{CCl}_{4}\right)$, kloroform $\left(\mathrm{CHCl}_{3}\right)$, kurşun asetat $\left(\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}\right)$, nitrik asit $\left(\mathrm{HNO}_{3}\right)$, potasyum ferrosiyanür $\left(\mathrm{K}_{4} \mathrm{Fe}(\mathrm{CN})_{6}\right)$, potasyum kromat $\left(\mathrm{K}_{2} \mathrm{CrO}_{4}\right)$, potasyum $\operatorname{klorat}\left(\mathrm{KClO}_{3}\right)$, potasyum nitrat $\left(\mathrm{KNO}_{3}\right)$, potasyum permanganat $\left(\mathrm{KMnO}_{4}\right)$, sodyum asetat $\left(\mathrm{NaCH}_{3} \mathrm{COO}\right)$, sodyum fosfat $\left(\mathrm{NaH}_{2} \mathrm{PO}_{4} .12 \mathrm{H}_{2} \mathrm{O}\right)$, sodyum karbonat $\left(\mathrm{Na}_{2} \mathrm{CO}_{3}\right)$, sodyum klorür (NaCl), sodyum nitrit $\left(\mathrm{NaNO}_{2}\right)$, sodyum sülfat $\left(\mathrm{Na}_{2} \mathrm{SO}_{4}\right)$, sodyum sülfür $\left(\mathrm{Na}_{2} \mathrm{~S}\right)$, sodyum sülfit $\left(\mathrm{Na}_{2} \mathrm{SO}_{3}\right)$, sodyumtiyosülfat $\left(\mathrm{Na}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}\right)$, sülfirik asit, tartarik asit ve üre.

1. Grup Anyonların Nitel Analizi

1. Grup anyonları $\mathrm{CO}_{3}{ }^{2-}$ (karbonat), $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ (okzalat), F^{-}(florür), $\mathrm{SO}_{3}{ }^{2-}$ (sülfit), $\mathrm{AsO}_{2}{ }^{-}$ (arsenit), $\mathrm{AsO}_{4}{ }^{3-}$ (arsenat) ve $\mathrm{PO}_{4}{ }^{3-}$-(fosfat) iyonlarından oluşur ve nötral veya hafif bazik ortamda $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile kalsiyum tuzları halinde çökerler.
2. Grup analizi sırasında CO_{3}^{2-} iyonu içeren reaktifler kullanılacaksa, $\mathrm{CO}_{3}{ }^{2-}$ iyonunun orijinal nümunede aranması gerekir. F^{-}iyonunun da orijinal nümunede aranması daha iyi bir netice verecektir.
3. Grup anyonları seyreltik $\mathrm{CH}_{3} \mathrm{COOH}$ ile etkileştirilerek iki alt gruba ayrılır. Kalsiyum tuzları asetik asitte çözünen $\mathrm{SO}_{3}{ }^{2-}, \mathrm{AsO}_{2}^{-}, \mathrm{AsO}_{4}{ }^{3-}$ ve $\mathrm{PO}_{4}{ }^{3-}$ anyonları 1 A grubunu ve kalsiyum tuzları asetik asitte çözünmeyen $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ve F^{-}anyonları ise 1 B grubunu oluştururlar. $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ ve F anyonlarının ise kalsiyum tuzları asetik asitte çözünmedikleri için çökelek kısmında aranmalıdır. Çözeltiye geçen anyonlar bekletilmeden aranmalıdır. Çünkü çözelti bekletildiğinde $\mathrm{SO}_{3}{ }^{2-}$ ve $\mathrm{AsO}_{2}{ }^{-}$anyonları havadaki oksijenle etkileşerek $\mathrm{SO}_{4}{ }^{2-}$ ve $\mathrm{AsO}_{4}{ }^{2-}$ haline dönüşürler.

DENEY: Anyonların Tanımması

Bu deneyde size, I. gruptan V. gruba kadar, sözü geçen anyonların birini veya birkaçımı bir arada içeren bir nümunenin çözeltisi verilecektir. Sizden istenen, verilen nümunede bu anyonlardan hangilerinin(veya hangisinin) bulunduğunu deney yaparak belirlemenizdir.

Analizleri yaparken bir yanlışlık yapmak veya kaza ile karşılaşmak her zaman mümkündür. Onun için önce nümunenizi üç eșit parçaya bölünüz ve biri ile çalışırken diğer ikisini yedek tutunuz.

Her seferinde, çalış̧ığınız nümune çözeltisinden $0,3-0,5 \mathrm{~mL}$ 'lik ($5-10$ damla) bir kısım alarak aşağıdaki deneyleri yapınız. Verilen deney sırasına uyunuz ve emin olmadığınız deney sonucu varsa; çalıştığınız çözeltiyi döküp en baştan, yeniden başlayınız.

Bir çözelti üzerine bir reaktif çözeltisi damlatılınca, parmağınızla tüpün yüzeyine vurarak iyice karışma sağlayınız.

Karbonat ($\mathrm{CO}_{3}{ }^{2-}$) Anyonunun Aranması

Karbonat anyonunu, ana nümuneden aramak en uygun yoldur. Çünkü anyonlar gruplara ayrılırken yapılan işlemler sırasıyla bazik çözeltilere havanın $\mathrm{CO}_{2}{ }^{\prime} \mathrm{i}$ karışarak karbonat oluşturur.

Buna firsat vermeden $\mathrm{CO}_{3}{ }^{2-}$ iyonunu aramak gerekir.
Bir deney tüpüne 10 damla $3 \mathrm{M} \mathrm{HCl}, 10$ damla su ve $0,1 \mathrm{~g} \mathrm{KClO}{ }_{3}$ ekleyin. Bu çözelti üzerine 10 damla $\mathrm{CO}_{3}{ }^{2-}$ aranılacak çözeltiden eklenir. Köpürme meydana geliyorsa $\mathrm{CO}_{3}{ }^{2-}$ anyonunun varlığını gösterir. Eklenen KClO_{3} ile çözeltide bulunabilecek sülfit, sülfür ve tiyosülfat iyonları asidik ortamda sülfat iyonuna ve serbest kükürde yükseltgenir. Böylece asidik ortamda gaz çıkışı verebilen diğer anyonlar yok edilmiş olur.

$$
\mathrm{CO}_{3}^{2-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons 3 \mathrm{H}_{2} \mathrm{O}+\mathrm{CO}_{2}(\mathrm{~g})
$$

1. Grup Anyonlarının Çöktürülmesi:

1 mL çözelti deney tüpüne alınıp üzerine çökme tamamlanana kadar $\mathrm{Ca}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisinden damla damla eklenir ve santrifüjlenir. Çökelek ile çözelti ayırılır.

Burada, l.grup anyonların hepsi kalsiyum tuzları şeklinde çöker. Biz sadece okzalat $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$, sülfit $\left(\mathrm{SO}_{3}{ }^{2-}\right)$ ve fosfat $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ anyonlarını arayacağız.

Sizin elde ettiğiniz çökelek (çökelek 1); $\mathrm{CaC}_{2} \mathrm{O}_{4}, \mathrm{CaSO}_{3}$ ve $\mathrm{Ca}_{3}\left(\mathrm{PO}_{4}\right)_{2}$ olabilir. Okzalat $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$, sülfit $\left(\mathrm{SO}_{3}{ }^{2-}\right) \mathrm{PO}_{4}{ }^{3-}$ anyonlarının aranmasında kullanılacaktır.
*Çözelti 1: $2-5$. Grup anyonlarını içerebilir ve bu anyonlarının analizi için saklanacaktır.
1A ve 1B Anyon Gruplarının Ayrılması: Çökelek 1'i 3 kez damıtık su ile yıkayın ve yıkama sularını atın. (Çökeleğin sarı renkli olması ortamda $\mathrm{CrO}_{4}{ }^{2-}$ anyonunun bulunduğunu gösterir. Çökeleğin $\mathrm{CrO}_{4}{ }^{2-}$ anyonu ile kirlenmesi 1. grup anyonlarının tanınmasını güçleştireceğinden çökeleğin sarı rengi kaybolana kadar yıkanmalıdır.) Çökelek üzerine 15 damla $3 \mathrm{M} \mathrm{CH} 3 \mathrm{COOH}^{2}$ çözeltisi ekleyin ve iyice karıştırdıktan sonra santrifüjleyin. Çökelek ile çözeltiyi birbirinden ayırın.

$\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ iyonunun Ca tuzu asetik asitte çözünmez diğer anyonların Ca tuzları ise çözünür.
Çökelek 2: $\mathrm{CaC}_{2} \mathrm{O}_{4}$ olabilir.
Çözelti 2: $\mathrm{SO}_{3}{ }^{2-}$ ve $\mathrm{PO}_{4}{ }^{3-}$ anyonlarını içerebilir. $\mathrm{SO}_{3}{ }^{2-}$ ve $\mathrm{PO}_{4}{ }^{3-}$ anyonlarının tanınmasında kullanılacaktır.

Okzalat $\left(\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}\right)$ Anyonunun Aranaması

Çökelek 2 üzerine 10 damla $1,5 \mathrm{M} \mathrm{H}_{2} \mathrm{SO}_{4}$ çözeltisi eklenip su banyosunda 1 dakika karıştırılarak istitlır. Daha sonra üzerine 2 damla $0,01 \mathrm{M} \mathrm{KMnO}_{4}$ çözeltisi eklenir.Pembe renk kaybolmuşsa $\mathrm{C}_{2} \mathrm{O}_{4}{ }^{2-}$ iyonu vardır.

Açıklama: Kalsiyum okzalat üzerine asit eklenmesiyle oluşan okzalik asit pembe renkli $\mathrm{MnO}_{4}{ }^{-}$iyonunu renksiz Mn^{2+} iyonuna indirger.

$$
\begin{aligned}
& \mathrm{CaC}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{Ca}^{2+}+\mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{H}_{2} \mathrm{O} \\
& 5 \mathrm{H}_{2} \mathrm{C}_{2} \mathrm{O}_{4}+2 \mathrm{MnO}^{-}+6 \mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons 2 \mathrm{Mn}^{2+} \rightleftharpoons 10 \mathrm{CO}_{2}+14 \mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

Sülfit $\left(\mathrm{SO}_{3}{ }^{2}\right)$ Anyonunun Aranması

Çözelti 2'nin ilk yarısının üzerine 2 damla derişik HCl ve 5 damla $1 \mathrm{M} \mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi eklenir ve santrifüjlenir. Herhangi bir çökelek oluşursa çäkelek ile çözelti ayrllır. Çökelek atılır. Berrak çözeltiye 5 damla $\% 3^{\prime}$ 'lük $\mathrm{H}_{2} \mathrm{O}_{2}$ çözeltisi eklenir. Beyaz çökelek oluşursa $\mathrm{SO}_{3}{ }^{2}$ iyonu vardir.

Açıklama: Hidrojen peroksit çözeltisi sülfit anyonunu sülfata yükseltger. Asidik ortamda sülfat anyonu BaSO_{4} halinde çöker. BaSO_{4} kuvvetli asitlerde çökmez.

Fosfat $\left(\mathrm{PO}_{4}{ }^{3-}\right)$ Anyonunun Aranmasi:

Çözelti 2'nin 2.yarısının üzerine 5 damla derişik HNO_{3} ve $0,2 \mathrm{~g}$ katı tartarik asit ekleyip çözeltiyi iyice karıştrdıktan sonra 5 damla amonyum molibdat çözeltisi ekleyin ve su banyosunda bir dakika ısııın. Sarı çökeleğin oluşumu $\mathrm{PO}_{4}{ }^{3-}$ anyonunun varlığını gösterir.

Açıklama: 1)Kuvvetli asidik bir çözeltide eklenen fazla miktardaki katı tartarik asit arsenik ile çözünür bir kompleks oluşturur. Ortama tartarik asit konmazsa amonyum molibdat ile fosfat anyonu yanında arsenat anyonu da çökecektir. 2) Arsenik ve taratrik asitin oluşturduğu çözünür karakterli kompleks isı etkisiyle parcalanabileceğinden çözelti su banyosunda istullırken kaynatılmamalıdır. 3) Fosfat anyonunun bulunmadığı durumlarda genellikle amonyum molibdatın parçalanması nedeniyle beyaz bir çökelek oluşur. Bu tür çökelek fosfat anyonunun varlığını göstermez.

$$
\mathrm{H}_{2} \mathrm{PO}_{4}^{-}+12 \mathrm{MoO}_{4}^{2-}+22 \mathrm{H}_{3} \mathrm{O}^{+}+3 \mathrm{NH}_{4}^{+} \rightleftharpoons \underset{\substack{\text { sarı } \\ \text { Amonyumfosfomolibdat }}}{\left(\mathrm{NH}_{4}\right)_{3} \mathrm{PO}_{4} \cdot 12 \mathrm{MoO}_{3}+34 \mathrm{H}_{2} \mathrm{O}}
$$

2. Grup Anyonlarının Analizi

Genel Açıklama

2. grup anyonları kromat $\left(\mathrm{CrO}_{4}{ }^{2-}\right)$ ve sülfat $\left(\mathrm{SO}_{4}{ }^{2-}\right)$ anyonlarını içerir. Bu anyonlar hafif bazik ortamda $\mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile BaCrO_{4} ve BaSO_{4} halinde çökerler. $\mathrm{BaSO}_{4}, 3 \mathrm{M} \mathrm{HCl}$ çözeltisinde çözünmez BaCrO_{4} ise çözünür. İki anyon, bu özellik farkı ile birbirinden ayrılır. Asidik çözeltideki $\mathrm{CrO}_{4}{ }^{2-}$ iyonları ise ortama NaOH eklenerek yeniden BaCrO_{4} halinde çöktürülerek tanınır.

2. Grup Anyonların Çöktürülmesi

I. grup anyonlarını çöktürülüp oluşan çökelek santrifüjlendikten sonra üste kalan saydam çözelti("̧özelti 1) üzerine çökme tamalanana kadar $1 \mathrm{M} \mathrm{Ba}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisinden damla damla ekleyip çözeltiyi santrifüjleyin. Çökelek ile çözelti ayırılır.

Çökelek 1: BaSO_{4} ve BaCrO_{4} olabilir. Ayrıca, I. grup anyonların tam çökmesi sağlanamamışsa, onlar da Ba^{2+} tuzları halinde çökmüş olabilir. En iyisi, I. grup anyonların zamanında tamamen çökmesini sağlamaktadır. Çökelek beyaz ise $\mathrm{CrO}_{4}{ }^{2-}$ anyonunun bulunmadığı anlaşılır. Bu çökelek sarı ise $\mathrm{BaCrO}_{4}{ }^{\text {'tır; yani }} \mathrm{CrO}_{4}{ }^{2-}$ anyonu vardır. $\mathrm{SO}_{4}{ }^{2-}$ anyonu ona eşlik edebilir.
*Çözelti 1: 3-5. Grup anyonlarını içerebilir ve bu grupların analizi için saklanacaktır(3. grup anyonlarının çöktürülmesi için).
2. Grup Anyonlarının Ayrılması ve Tanınması: Çökelek 1'i 10 damla damıtık su ile yıkayıp yıkama suyunu atın. Çökelek üzerine 5 damla 3 M HCl çözeltisi ekleyip iyice karıştırın ve çözeltiyi santrifüjleyin. Çökelek ile çözelti ayırılır.

$$
\mathrm{BaCrO}_{4}(\mathrm{k})+\mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{HCrO}_{4}^{-}+\mathrm{Ba}^{2+}+\mathrm{H}_{2} \mathrm{O}
$$

Çökelek 2: BaSO_{4} olabilir ve $\mathrm{SO}_{4}{ }^{2-}$ anyonunun tanınmasında kullanılacaktır.
Çözelti 2: $\mathrm{CrO}_{4}{ }^{2-}$ anyonunu içerebilir ve bu anyonun tanınmasında kullanılacaktır.

Sülfat ($\mathrm{SO}_{4}{ }^{2-}$) Anyonun Tanınması

Çökelek 2 üzerine 10 damla 3 M HCl çözeltisi ekleyin. Eğer çözünmeyen beyaz bir çökelek oluşuyorsa $\mathrm{SO}_{4}{ }^{2-}$ anyonunun varlığını gösterir. Eklenen HCl çözeltisinde 1. grupta kaçabilen anyonların oluşturabileceği çökelekler çözünecek, BaSO_{4} çözünmeyecektir.

Kromat ($\mathrm{CrO}_{4}{ }^{2-}$) Anyonunun Aranması

Çözelti 2'nin rengi sarı ise kromatın bulunduğu hemen hemen bellidir. Emin olmak için, çözelti 2 üzerine 10 damla $2,5 \mathrm{M} \mathrm{NaCH} \mathrm{COO}_{3} \mathrm{C}$ çözeltisi ekleyin. Sarı renkli bir çökelek oluşuyorsa $\mathrm{CrO}_{4}{ }^{2 \cdot}$ anyonunu varlığını gösterir. $\mathrm{NaCH}_{3} \mathrm{COO}$ çözeltisinin eklenme sebebi, çözeltideki hidronyum iyonu derişimini tamponlayarak BaCrO_{4} 'ın yeniden çökmesini sağlamaktır.

3. Grup Anyonların Nitel Analizi

Genel Açıklama

3. grup anyonları sülfür $\left(\mathrm{S}^{2-}\right)$, ferrosiyanür $\left(\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}\right]\right)$ ve ferrisiyanür $\left(\left[\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}\right]\right)$ anyonlarından oluşur ve nötral veya hafif bazik ortamda $\mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile kadmiyum tuzları halinde çökerler. Biz , sülfür $\left(\mathrm{S}^{2-}\right)$ ve ferrosiyanür $\left(\mathrm{Fe}(\mathrm{CN})_{6}^{{ }^{4}}\right.$) iyonlarını arayacağız.

Sülfür anyonunun tanınma deneyi metal sülfürü oluşumuna dayanır. Önce pis kokulu $\mathrm{H}_{2} \mathrm{~S}$ gazına dönüştürülen sülfür anyonu $\mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}{ }^{\prime}$ lı kağıt üzerinde oluşturduğu siyah PbS bileşiği ile tanımr.

Ferrosiyanür ve ferrisiyanür anyonlarının tanınma deneyleri Fe^{3+} ve Fe^{2+} iyonları ile oluşturdukları koyu mavi renkli $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ ve $\mathrm{Fe}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$ çökeleklerine dayanır. Bu çökeleklerin renkleri mavidir.

3. Grup Anyonların Çöktürülmesi

2. grup anyonlar çöktürülüp santrifuijlendiği zaman elde edilen çözeltiye çökme tamalanıncaya kadar $1 \mathrm{M} \mathrm{Cd}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisinden damla damla ekleyip çözeltiyi santrifuijleyin. Çökelek ve çözelti ayrılır. (Dikkat: Çözelti hafif bazik olduğundan $\mathrm{Cd}(\mathrm{OH})_{2}$ çökebilir. Bu yüzden, bir çökelek oluşumu, 3. grup anyonların varlığına kesin delil sayılmaz! 3.grup anyonlarının varlığı genellikle renkli olan yoğun bir çökelek oluşumundan anlaşılır. Çökeleğin rengi bileşimi hakkında bilgi verebilir.)

Çökelek 1: $\mathrm{CdS}, \mathrm{Cd}_{2} \mathrm{Fe}(\mathrm{CN})_{6}, \mathrm{Cd}_{3}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{2}$ olabilir. Bu çökelek 3. grup anyonların tanınmasında kullanılacaktır.
*Çözelti 1: 4-5. grup anyonlarını içerebilir ve bu grupların analizi için saklanacaktır.

Sülfür (S^{2-}) Anyonunun Tanınması

Çökelek 1'in ilk yarısı alınır. İki kez sıcak su ile yıkadıktan sonra bir deney tüpüne konulur ve üzerine 3 damla 3 M HCl çözeltisi eklenip tüpün ağzı $0,5 \mathrm{M} \mathrm{Pb}\left(\mathrm{CH}_{3} \mathrm{COO}\right)_{2}$ çözeltisi ile islatılmış bir süzgeç kağıdı ile kapatılır. Süzgeç kağıdında PbS oluşumu nedeniyle ortaya çıkan kahverengi veya siyah renklenme S^{2-} anyonun varlı̆̆ını gösterir.

Ferrosiyanür ($\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4}$) Anyonunun Tanınması

Çökelek 1'in 2. yarısını bir deney tüpüne alıp üzerine çökelek çözünene kadar(1-2)damla 3 M HCl çözeltisi ile birkaç damla $0,1 \mathrm{M} \mathrm{FeCl}{ }_{3}$ çözeltisi ekleyin. Oluşan koyu mavi $\mathrm{Fe}_{4}\left[\mathrm{Fe}(\mathrm{CN})_{6}\right]_{3}$ çökeleği $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{4-}$ anyonunun varlı̆̆ını gösterir.

Açıklama: Seyreltik HCl çözeltisi çökelek tam çözünene ve ortam hafif asidik olana kadar eklenmelidir. Çözelti çok asidik olduğunda HCl çözeltisindeki çözünürlüğü nedeniyle koyu mavi renkli ferrosiyanür çökeleği elde edilemeyebilir. Bu çökeleğin koyu mavi rengine prusya mavisi de denilmektedir. Yeşil bir çözelti oluşumu ise $\mathrm{Fe}(\mathrm{CN})_{6}{ }^{3-}$ anyonunun varlığını gösterir.

4. Grup Anyonların Nitel Analizi

Genel Açıklama

4. grup anyonları tiyosülfat ($\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$), tiyosiyanat (SCN^{-}), klorür (Cl^{-}), iyodür (I^{-})ve bromür (Br^{-}) iyonlarından oluşur ve asidik ortamda $\mathrm{AgCH}_{3} \mathrm{COO}$ çözeltisi ile gümüş tuzları halinde çöker. Biz bu deneyde tiyosülfat $\left(\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}\right)$ ve klorïr (Cl^{-}) iyonlarını tanıyacağız.
5. grup anyonlarının çöktürülmesi işlemden ayrılan çözelti l'den 3 damla alıp üzerine 5 damla doymuş $\mathrm{AgCH}_{3} \mathrm{COO}$ çözeltisi ekleyiniz ve çözeltiyi $3 \mathrm{M} \mathrm{HNO}_{3}$ çözeltisi ile asitlendiriniz. Çözeltinin asidik olup olmadığını turnusol kağıdı ile kontrol ediniz. Çökelek oluşursa çözeltide 4. grup anyonlarının bulunduğu anlaşılır. Çökelek oluşmazsa çözeltinin kalan kısmı ile 5. grup anyonlarının aranmasına geçilir.

4. Grup Anyonların Çöktürülmesi

3. grupanyon analizinde çöktürülüp santrifüjleme sonucunda elde edilen çözelti iki kısma ayrılır. Biri yedek olarak muhafaza edilir; diğer yarısı bir tüpe alınıp üzerine çökme tamamlanana kadar damla damla doymuș $\mathrm{AgCH}_{3} \mathrm{COO}$ çözeltisi eklenir ve bu arada çözelti karıştırılır. 6 M $\mathrm{CH}_{3} \mathrm{COOH}$ çözeltisi ile ortam asidikleştirilir, çözelti iyice karıştırlır ve santrüfüjlenir. Çökelek çözeltiden ayırılır.

$$
\begin{aligned}
& 2 \mathrm{Ag}^{+}+\mathrm{S}_{2} \mathrm{O}_{3}^{2-} \rightleftharpoons \begin{array}{c}
\mathrm{Ag}_{2} \mathrm{~S}_{2} \mathrm{O}_{3}(\mathrm{k}) \\
\text { beyaz } \\
\mathrm{Ag}^{+}+\mathrm{Ci}
\end{array} \\
& \rightleftharpoons \begin{array}{c}
\mathrm{AgCl}(\mathrm{k}) \\
\text { beyaz }
\end{array} \\
& \mathrm{Ag}^{+}+\mathrm{SCN}^{-} \rightleftharpoons \begin{array}{c}
\mathrm{AgSCN}(\mathrm{k}) \\
\text { beyaz }
\end{array} \\
& \mathrm{Ag}^{+}+\mathrm{Br} \rightleftharpoons \begin{array}{c}
\mathrm{AgBr}(\mathrm{k})
\end{array} \\
& \mathrm{krem} \mathrm{rengi}^{+} \rightleftharpoons \begin{array}{c}
\mathrm{AgI}(\mathrm{k}) \\
\text { sarı }
\end{array}
\end{aligned}
$$

Cökelek 1: $\mathrm{Ag}_{2} \mathrm{~S}, \mathrm{AgCl}, \mathrm{AgSCN}, \mathrm{AgBr}$ ve AgI olabilir.
"Çözelti 1: 5 . Grup anyonlarını içerebilir ve bu grubun analizi için saklanacaktır.

Tiyosülfat ($\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$) Anyonunun Tanınması

4. grup ön deneme veya çöktürme işleminde çökeleğin renginin beyazdan bașlayıp sarı, turuncu ve kahverengi ara renklerinden geçip sonunda siyahlaşması $\mathrm{S}_{2} \mathrm{O}_{3}{ }^{2-}$ anyonunun varlığını gösterir.

beyaz

Klorür (Cl^{-}) Anyonunun Tanınması

Çökelek 1'i birkaç damla $3 \mathrm{M} \mathrm{HNO}_{3}$ çözeltisi ile asitlenlendirilmiş damıtık su ile iyice yıkanır ve yıkama suları atılır. HNO_{3} 'i ortamdan uzaklaştırmak için çökelek bir kez daha damııık su ile yıkanır ve yıkama suyu atılır. Yıkanmış çökelek üzerine 10 damla amonyak çözeltisi eklenip çözelti iyice karıştrılır ve santrifüjlenir. Çökelek ile çözelti ayrılır.

$$
\mathrm{AgCl}+2 \mathrm{NH}_{3} \rightleftharpoons \mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}+\mathrm{Cl}
$$

Çözelti üzerine hafif asidik olana kadar damla damla $3 \mathrm{M} \mathrm{HNO}_{3}$ çözeltisi eklenir. Ortamda klorür $\left(\mathrm{Cl}^{-}\right)$var ise oluşan beyaz çökelek nitrik asitte çözünmeyen AgCl olup Cl^{-}anyonunun varlığı kesinleşmiş olur.

$$
\mathrm{Ag}\left(\mathrm{NH}_{3}\right)_{2}^{+}+\mathrm{Cl}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{AgCl}(\mathrm{k})+\mathrm{NH}_{4}^{+}+2 \mathrm{H}_{2} \mathrm{C}
$$

5. Grup Anyonlarının Nitel Analizi

Genel Açıklama

5. Grup anyonları klorat (ClO_{3}^{-}), borat (BO_{2}^{-}), nitrit (NO_{2}^{-}) ve nitrat $\left(\mathrm{NO}_{3}^{-}\right)$ anyonlarından oluşur. Bu gruptaki anyonların bilinen tuzlarının çoğu suda çözündüğünden dolayı bu gruba suda çözünür grup da denir. Borat tuzları suda tam çözünmediğinden bu durum borat iyonu için tam geçerli olmamakla birlikte borat iyonu, metaborat (BO_{2}^{-}) olarak ilk dört grubun herhangi birinde tam olarak çöktürülemediğinden 5. gruba gelebilecek kadar çözünürdür.

Biz bu gruptaki anyonlardan sadece nitrit $\left(\mathrm{NO}_{2}{ }^{-}\right)$ve nitratı $\left(\mathrm{NO}_{3}{ }^{-}\right)$tanıyacagız.

Nitrit ($\mathrm{NO}_{2}{ }^{-}$) Anyonunun Tanıması

Çözelti üzerine hacmi kadar HCl 'de çözünmüş üre çözeltisi(200 g üre +1 L 3 M HCl çözeltisi) ekleyin. Şiddetli gaz çıkışı $\mathrm{NO}_{2}{ }^{-}$anyonunun varlığını gösterir.

$$
\mathrm{CO}\left(\mathrm{NH}_{2}\right)_{2}+2 \mathrm{NO}_{2}^{-}+2 \mathrm{H}_{3} \mathrm{O}^{+} \rightleftharpoons \mathrm{CO}_{2}+2 \mathrm{~N}_{2}+5 \mathrm{H}_{2} \mathrm{O}
$$

Nitrat ($\mathrm{NO}_{3}{ }^{-}$) Anyonunun Tanımması

Saat camıüzerine 1 damla çözelti alıp üzerine birkaç küçük FeSO_{4} kristali ile 1 damla derişik $\mathrm{H}_{2} \mathrm{SO}_{4}$ çözeltisi eklenir. Kristalin etrafında kahverengi renkli halka oluşmuşsa çözeltide $\mathrm{NO}_{3}{ }^{-}$iyonu vardır.

$$
\begin{aligned}
3 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}+\mathrm{NO}_{3}^{-}+4 \mathrm{H}_{3} \mathrm{O}^{+} & \rightleftharpoons 3 \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{3+}+\mathrm{NO}+6 \mathrm{H}_{2} \mathrm{O} \\
\mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{6}^{2+}+\mathrm{NO} & \rightleftharpoons \mathrm{Fe}\left(\mathrm{H}_{2} \mathrm{O}\right)_{5} \mathrm{NO}^{2+}+\mathrm{H}_{2} \mathrm{O}
\end{aligned}
$$

kahverengi renkli (Demir-II-nitrozo kompleksi kompleks iyon

