Laplace Transforms

LAPLACE TRANSFORMS

- In Food Engineering we develop a number of mathematical models that describe the dynamic operation of selected processes.
-Solving such models requires either analytical or numerical integration of the differential equations.
-Laplace transformation is a mathematical tool that converts differential equations to algebraic equations.
- It reduces the effort required to solve the model.

Definition

The laplace transform of a function $f(t)$ is defined as:

$$
f(s)=\int_{0}^{\infty} f(t) e^{-s t} d t
$$

- $f(t)$ is a function depends on time
- $f(s)$ function is the Laplace Transform of $f(t)$
- Laplace transformations can represented by different symbols.

$$
\mathrm{f}(\mathrm{~s})=\mathrm{L}\{\mathrm{f}(\mathrm{t})\}=\mathrm{F}(\mathrm{~s})=\overline{\mathrm{f}(\mathrm{~s})}=\mathrm{Y}(\mathrm{~s})
$$

Let's apply Laplace transform to $\mathrm{f}(\mathrm{t})=1$

$$
\begin{aligned}
& f(s)=\int_{0}^{\infty}(1) e^{-s t} d t=-\left.\frac{e^{-s t}}{s}\right|_{0} ^{\infty}=-0+\frac{e^{-s^{*} 0}}{s}=\frac{1}{s} \\
& L\{1\}=\frac{1}{s}
\end{aligned}
$$

Therefore the laplace transform of $f(t)=1$ is:

$$
f\{s\}=\frac{1}{s}
$$

- In solving differential equations:
- First apply Laplace transformation
- Then solve the equations algebraically to obtain Y(s)
- Finally take the inverse Laplace transform
- Laplace transform tables helps us to convert the functions.

1

$1 / s$
$\tau \xrightarrow[\underbrace{0}_{t}]{\text { T }}$
$1 / s^{2}$
$\downarrow \frac{n!}{s^{n+1}}, n=0,1,2, \ldots$
$e^{-a t}$

$\frac{1}{s+a}$
$t^{n} \cdot e^{-a t}$

$$
\frac{n!}{(s+a)^{n+1}}
$$

$\cos k t$

$\sinh k t$

$\sin k t$

$$
\frac{k}{s^{2}-k^{2}}
$$

$$
\frac{s}{s^{2}-k^{2}}
$$

$$
\frac{k}{s^{2}+k^{2}}
$$

$\cosh k t$

$$
\frac{s}{s^{2}+k^{2}}
$$

$\frac{k}{(s+a)^{2}+k^{2}}$
$e^{-a t} \cos k t$

$$
\frac{s+a}{(s+a)^{2}+k^{2}}
$$

PROPERTIES OF LAPLACE TRANSFORM

1. Time variable is between zero and infinity $(\mathrm{o}<\mathrm{t}<\infty)$
2. Laplace transformation is always applied to linear differential equations
3. The laplace transform of the sum of two function is equal to laplace transform of individual functions separately.

$$
\mathrm{L}\left\{\mathrm{af}_{1}(\mathrm{t})+\mathrm{bf}_{2}(\mathrm{t})\right\}=\mathrm{aL}\left\{\mathrm{f}_{1}(\mathrm{t})\right\}+\mathrm{bL}\left\{\mathrm{f}_{2}(\mathrm{t})\right\}
$$ a and b are constants, f_{1} and f_{2} are the functions.

4. Variable t is eliminated by variable s during laplace transformation.

Laplace Transform of a Derivative

$$
\begin{gathered}
£\left\{f^{\prime}(t)\right\}=s f(s)-f(0) \\
£\left\{f^{\prime \prime}(t)\right\}=s^{2} f(s)-s f(0)-f^{\prime}(0) \\
£\left\{\frac{d^{n} f(t)}{d t^{n}}\right\}=s^{n} f(s)-s^{n-1} f(0)-s^{n-2} f^{\prime}(0) \ldots-f^{n-1}(0)
\end{gathered}
$$

Laplace Transform of an Integral

$$
£\left\{\int_{0}^{t} f(t) d t\right\}=\frac{f(s)}{s}
$$

How to solve differential equ.?

$$
\begin{aligned}
& y=f(t) \quad y(0)=1 \quad L(y)=Y(s) \\
& \qquad \begin{array}{ll}
\bullet & \mathrm{y} \rightarrow \text { is a function of } \mathrm{t} \\
5 \frac{d y}{d t}+4 y=2 & \begin{array}{l}
\mathrm{y}=1 \text { @ } \mathrm{t}=\mathrm{o}
\end{array} \\
\begin{array}{l}
\text { Laplace transform of } \\
\text { function } \mathrm{y} \text { is equal to } \mathrm{Y}(\mathrm{~s})
\end{array}
\end{array}
\end{aligned}
$$

- Solve the differential equation above using laplace transforms.

How to solve differential equ.?

$$
y=f(t) \quad y(0)=1 \quad L(y)=Y(s)
$$

- Apply laplace

$$
5 \frac{d y}{d t}+4 y=2
$$

- Solve the equations transform to each term algebraically to obtain Y(s)
- Apply inverse transform to each term
- You may use the Laplace table.

Example

Solve the differential equation by Laplace.
$\frac{d^{2} y}{d t^{2}}+2 \frac{d y}{d t}+y=1$
$y(0)=y^{\prime}(0)=0$

Final and Initial Value Theorem

 Final and initial value theorem gives information about the process in process control and process dynamics.$\lim _{t \rightarrow \infty}[f(t)]=\lim _{s \rightarrow 0}[s F(s)]$
FINAL VALUE THEOREM

- It is used to find the steady state value of the function ($\mathrm{t}=\infty$)
- It is used to find the initial value of the function at $\mathrm{t}=\mathrm{o}$

Examples of Final and Initial Value Theorem

$$
\begin{array}{cc}
Y(s)=\frac{5 s+2}{s(5 s+4)} & \begin{array}{l}
\text { Laplace of a } \\
\text { function }
\end{array} \\
s Y(s)=\frac{5 s+2}{(5 s+4)} & \begin{array}{ll}
\text { Initial value } \\
\text { theorem }
\end{array} \\
\lim _{s \rightarrow \infty} s Y(s)=\frac{5 s+2}{5 s+4}=1 & \begin{array}{l}
\text { Final value } \\
\text { theorem }
\end{array}
\end{array}
$$

EXAMPLE

$$
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+8 y=2 \quad y(0)=y^{\prime}(0)=0 \bullet \mathrm{ODE}
$$

- Apply laplace transform to each term
- Solve for Y(s)
- Apply the method of partial fractions
- Determine the inverse transform

SOLUTION

$$
\begin{array}{cl}
\frac{d^{2} y}{d t^{2}}+6 \frac{d y}{d t}+8 y=2 \quad y(0)=y^{\prime}(0)=0 & \text { ODE } \\
s^{2} Y(s)+6 s Y(s)+8 Y(s)=2 / s & \begin{array}{l}
\text { Apply laplace transform } \\
\text { to each term }
\end{array} \\
Y(s)=\frac{2}{s(s+2)(s+4)} & \begin{array}{l}
\text { - }
\end{array} \\
\begin{array}{ll}
\text { Solve for } \mathrm{Y}(\mathrm{~s})
\end{array} \\
\begin{array}{ll}
\text { Apply the method of } \\
\text { partial fractions }
\end{array} \\
Y(s)=\frac{1}{4 s}+\frac{-1}{2(s+2)}+\frac{1}{4(s+4)} & \begin{array}{l}
\text { Determine the inverse } \\
\text { transform }
\end{array} \\
y(t)=\frac{1}{4}-\frac{e^{-2 t}}{2}+\frac{e^{-4 t}}{4} &
\end{array}
$$

