


 

 LAPLACE TRANSFORMS 
•In Food Engineering we develop a number of 
mathematical models  that describe the dynamic 
operation of selected processes.  
 
•Solving such models requires either analytical or 
numerical integration of the differential equations.  
 
•Laplace transformation is a mathematical tool that 
converts differential equations to algebraic 
equations. 
 
• It reduces the effort required to solve the model.  



  

Definition  

 
 The laplace transform of a function f(t) is defined as: 
  

         
  
  
  

  

 f(t) is a function depends on time 

 f(s) function is the Laplace Transform of f(t)  

 Laplace transformations can represented by different symbols. 
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Let’s apply Laplace transform to f(t) = 1  

  

          

 

          

         

  
 

Therefore the laplace transform of f(t)=1 is: 
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 In solving differential equations: 

 First apply Laplace transformation 

 Then solve the equations algebraically to obtain Y(s) 

 Finally take the inverse Laplace transform 

 

 Laplace transform tables helps us to convert the 
functions.  
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PROPERTIES OF LAPLACE 
TRANSFORM 

  

 1. Time variable is between zero and infinity(0< t < ) 

 2. Laplace transformation is always applied to linear 
differential equations 

 3. The laplace transform of the sum of two function is equal 
to laplace transform of individual functions separately.  

 

 

 a and b are constants, f1 and f2 are the functions. 

 

4. Variable t is eliminated by variable s during laplace 
transformation.  
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Laplace Transform of a Derivative 
 

Laplace Transform of an Integral 
 



How to solve differential equ.? 

)()(1)0()( sYyLytfy 
 y  is a function of t 

 y= 1 @ t=0 

 Laplace transform of 
function y is equal to Y(s)  245  y

dt

dy

• Solve the differential 
equation above using 
laplace transforms. 



How to solve differential equ.? 

)()(1)0()( sYyLytfy 

245  y
dt

dy

• Apply laplace 
transform to each term 

• Solve the equations 
algebraically to obtain 
Y(s)  

• Apply inverse 
transform to each term 

• You may use the 
Laplace table. 

 

 



Example 

 Solve the differential equation by Laplace.  
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Final and Initial Value Theorem 

   )(lim)(lim 0 sFstf st    It is used to find the 
steady state value of 
the function (t=    ) 

Final and initial value theorem gives information 
about the process in process control and process 
dynamics. 

   )(lim)(lim 0 sFstf st  
• It is used to find the 

initial value of the 
function at t=0 

FINAL VALUE THEOREM 

INITIAL VALUE THEOREM 



Examples of Final and Initial Value 
Theorem 
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 Laplace of a 
function 

 

 

 

 

 Initial value 
theorem 

 

 

 Final value 
theorem 
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EXAMPLE 
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dt

dy

dt

yd
 ODE  

 Apply laplace transform 
to each term 

 Solve for Y(s) 

 Apply the method of 
partial fractions 

 Determine the inverse 
transform 

 

 



SOLUTION 
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 ODE  

 Apply laplace transform 
to each term 

 Solve for Y(s) 

 Apply the method of 
partial fractions 

 Determine the inverse 
transform 

 


