Transfer Functions and Block Diagrams

TRANSFER FUNCTIONS

- The transfer function is an algebraic expression for the dynamic relation between the input and the output of the process model.
- •Transfer function is the ratio of Laplace transform of output variable to Laplace transform of input variable.
- The input and output variables are expressed in the form of deviation variable while determining the transfer function.
- **Deviation variable:** It shows how much a variable deviates from its initial steady state conditions. (Unsteady state value)

TRANSFER FUNCTIONS

$$G(s) = \frac{Y(s)}{X(s)}$$

- •G(s) → Transfer function
- •Y(s) → Laplace transform of output variable (in the form of deviation variable)
- •X(s) → Laplace transform of input variable (in the form of deviation variable)

Block Diagram

$$G(s) = \frac{Y(s)}{X(s)}$$

Block Diagrams

- It is always useful to express the system graphically while designing or analyzing it.
- Block diagrams helps us to visualize the system.

Properties of Block Diagrams

• If the blocks are in series, then the transfer functions are multiplied.

$$\frac{Y(s)}{X(s)} = G_1(s).G_2(s)$$

•If the blocks are in parallel, then the transfer functions are summed up or subtracted.

•Transfer function of a negative feedback system:

$$\frac{Y(s)}{X(s)} = ?$$

•Transfer function of a negative feedback system:

$$\frac{Y(s)}{E(s)} = G_1(s) \longrightarrow E(s) = \frac{Y(s)}{G_1(s)}$$

$$\frac{U(s)}{Y(s)} = G_2(s) \longrightarrow U(s) = G_2(s).Y(s)$$

$$E(s) = X(s) - U(s)$$

•Transfer function of a negative feedback system:

$$\frac{Y(s)}{G_1(s)} = X(s) - G_2(s).Y(s)$$

$$Y(s) \left\lceil \frac{1}{G_1(s)} + G_2(s) \right\rceil = X(s)$$

$$\frac{Y(s)}{X(s)} = \frac{1}{\left[\frac{1}{G_1(s)} + G_2(s)\right]}$$

$$\frac{Y(s)}{X(s)} = \frac{G_1(s)}{1 + G_1(s)G_2(s)}$$

•Transfer function of a positive feedback system:

$$\frac{Y(s)}{X(s)} = \frac{G_1(s)}{1 - G_1(s)G_2(s)}$$

Example:

Find the transfer function of the system.

$$\frac{Y(s)}{X(s)}$$

$$\frac{Y(s)}{X(s)} = ?$$