MATHEMATICAL MODELING

MATHEMATICAL MODELING

A model is a mathematical abstraction of a real process.

The relation between input and output variables can also be defined as Model.

Processes can be expressed by differential equations.

Steady State

★ A system in a steady state has numerous properties (T, P, C, V, h, ...) that are unchanging in time
 (Food processes are mostly operated at steady state)

Unsteady State

★ Properties of the system changes with time

- Start-up
- Shut-down
- -Batch

Process Dynamics

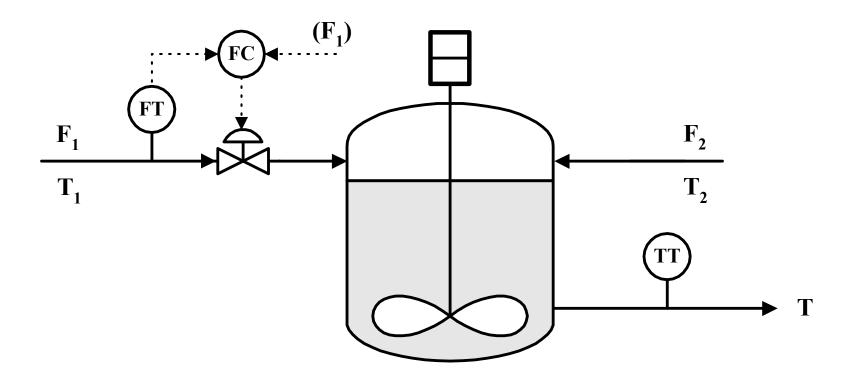
 ★ Response of the process to a change in input variables. Behavior of the process with time Response depends on ;

- Properties of the input
- Characteristics of the process

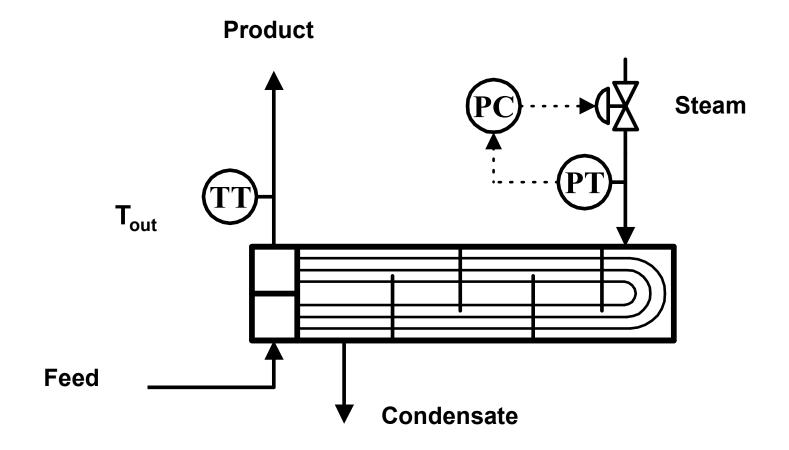
Classification of the Models

- Lumped parameter models- properties do not change with position within the system
 - Example: *a well mixed tank*
 - Macroscopic (total) balance is needed.
- **Distributed parameter models-** properties change with position
 - Microscopic (componenet) balance is needed.

Lumped parameter process



Distributed parameter process

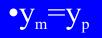


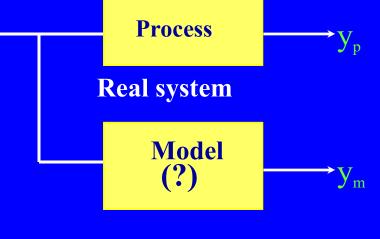
Mathematical Modeling

11

Model needs to be the best approximation of the true process.

In theory:





Mathematical representation of the process

In Mathematical Modeling, Conservation Laws are mainly used.

Mass Balance

Rate of mass accum. = (Rate of Mass Input) - (Rate of Mass Output) ± (Rate of Mass Generated/Consumed)

Energy Balance

Rate of energy accum.= (Rate of Energy Input) - (Rate of Energy Output) ± (Rate of Energy Generated/Consumed)

Momentum Balance

Rate of momentum accum. = (Rate of Momentum Input) - (Rate of Momentum Output) + Sum of net forces acting on the element

In addition; Thermodynamic Laws, Newton's Law of Viscosity, Fourier's Law, Fick's Law etc.....

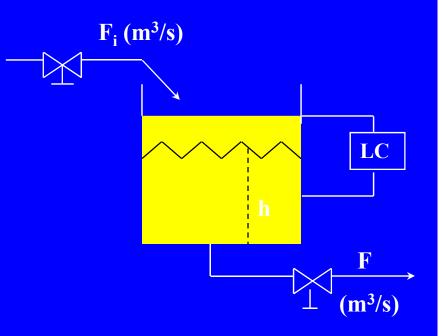
Example 1: Liquid Storage System

Problem: Control the liquid level in the tank. Controlled variable: h

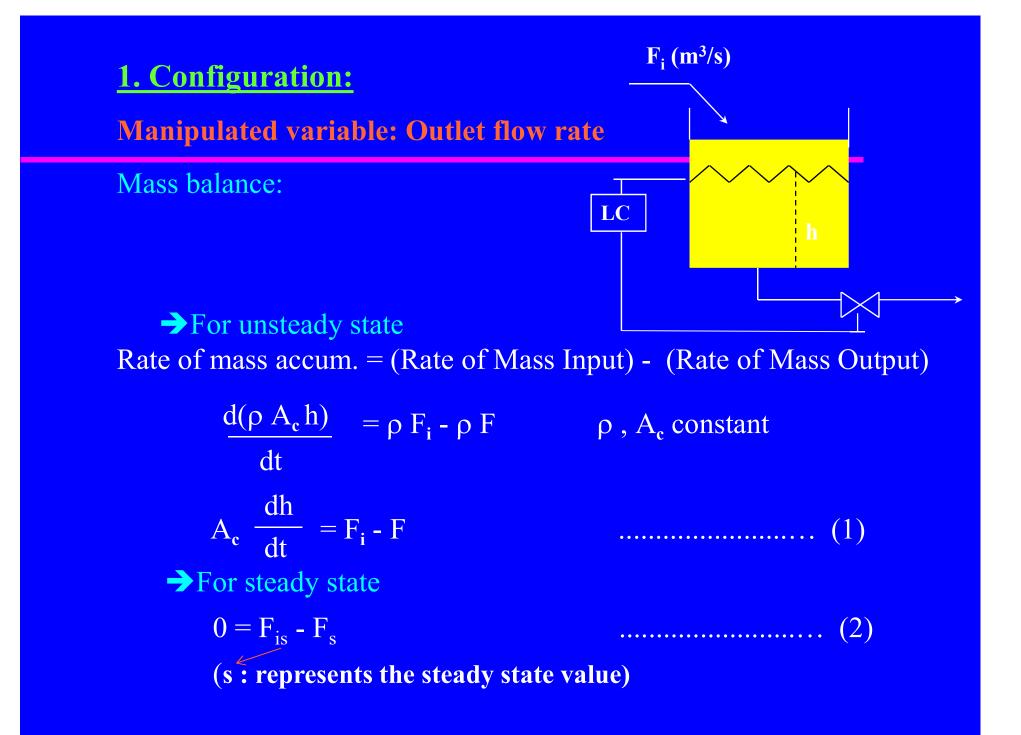
> Input variables: F_i, F Manipulated variable: ?

Control system can be configured in different ways.

Process model will be different depending on your control system.



Tank cross sectional area
A_c= constant



Subtract Equation (2) from Equation (1); $A_{c} \frac{dh}{dt} = (F_{i} - F_{is}) - (F - F_{s})$

Deviation Variables:

If we define deviation variables as

- $y = h h_s$
- $d = F_i F_{is}$
- $u = F F_s$

Because we want to

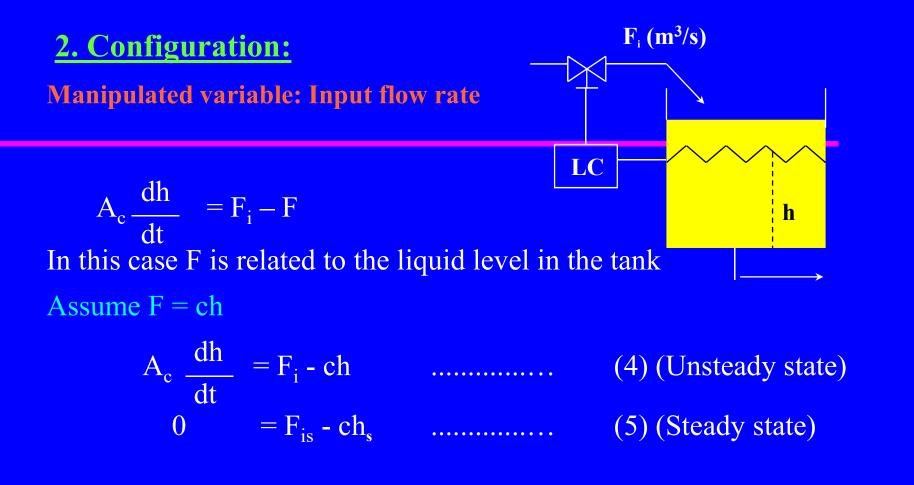
express the variables in

Deviation variable: It shows how much a variable deviates from its initial steady state conditions.

Then, the model of the process :

dy	$-\frac{1}{d}$ d	1 u
dt	$=$ A_c	Ac

This equation shows how the controlled variable (y) depends on disturbances (d) and manipulated variable(u).



Subtract Equation (5) from Equation (4);

$$A_{c} \frac{dh}{dt} = (F_{i} - F_{is}) - c (h - h_{s}) \dots (6)$$

The model of the process in terms of deviation variables:

y = h - h_s, u = F_i - F_{is}
$$\frac{dy}{dt} + \frac{c}{A_c}y = \frac{1}{A_c}u$$

This model shows how the controlled variable (y) depends on manipulated variable(u). Not a good model.

In reality;
$$F = c h$$

Not linea

We need to linearize because laplace can only be applied to linear dif. equ.

Ac
$$\frac{dh}{dt} = F_i - F$$

Ac $\frac{dh}{dt} = F_i - c\sqrt{h}$
Not linear