
Chapter 3

The Building Blocks

Up to this point we have hopefully learned how to use R as a basic calculator and you know how
to do some basic arithmetic, use basic functions, and access R’s help functionality. To move be-
yond using R as a calculator this chapter will introduce the main building blocks of R – objects
and their modes. The discussion that follows is not technically correct (in fact it is a gross mis-
characterization) but it should help make sense of things and why things in R happen the way they
do.

From here on out, you are no longer allowed type directly into the R Console!

3.1 Objects

R is an object oriented language. As I mentioned in passing above everything in R is an object.
When R does anything, it creates and manipulates objects. R’s objects come in different types and
flavors. The most basic ones are:

→ Vectors: These are one-dimensional sequences of elements of the same mode. (More on modes
later: see section 3.2.) For example, this could be vector of length 26 (i.e. one containing 26
elements) where each element is a letter in the alphabet.

→ Matrices & Arrays: These are two dimensional rectangular objects (matrices) and higher-
dimensional rectangular objects (arrays). All elements of matrices or arrays have to be of the
same mode.

→ Lists: Lists are like vectors but they do not have to contain elements of the same mode. The
first element of a list could be a vector of the 26 letters of the alphabet. The second element
could contain a vector of all the prime numbers below 1000. A third could be a 2 by 7 matrix.

→ Data Frames: Data frames are best understood as special matrices (technically they are a
type of list). For most applications involving datasets you will use data frames. They are two
dimensional containers with rows corresponding to ‘observations’ and columns corresponding
to ‘variables.’

→ Factors: Factors are vectors to classify categorical data. They behave differently than vectors
containing numerical, integer, or character elements.

18

→ Functions: Functions are objects that take other objects as inputs and return some new object.
We will deal with functions separately in a later chapter.

3.2 Modes

All objects have a certain mode. Some objects can only deal with one mode at a time, others can
store elements of multiple modes. R distinguishes the following modes:

1. integer: integers (e.g. 1, 2 or -69)

2. numeric: real numbers (e.g 2.336, -0.35)

3. complex: complex or imaginary numbers

4. character: elements made up of text-strings (e.g. "text", "Hello World!", or "123")

5. logical: data containing logical constants (i.e. TRUE and FALSE)

3.3 Assignment and Reference

Knowing the types of objects R can work with is not terribly useful without knowing how to store
these objects and without knowing how to recall or reference them when needed. You often will
compute some statistic or manipulate some matrix. Instead of recalculating everything over and
over again we can give things names and recall them later. Below we will cover how to create,
assign to and refer to various objects. We shall use vectors as examples.

3.3.1 Playing with trivial Vectors

Recall our basic arithmetic examples from above. We implicitly relied on and then manipulated
objects and R implicitly printed these objects to the screen.

1 > 1 + 2
[1] 3

Let’s assign and recall names instead. We can do that by using the assignment operator “<-”. Think
of this as the M+ button on your calculator.

1 > Answer <- 1 + 2
>

We can use just about any name we like so long as it is not a number or does not start with a
number (e.g. 3 <- 1 + 2 will not work, neither will 3Answer <- 1 + 2). It is very useful to
use descriptive names such as NumberOfStudents <- 17 instead of n <- 17 . Don’t confuse
yourself.

19

As you can see in the example above. R no longer gives you the answer to our problem. It just
returns the prompt. Luckily you are familiar with R’s print() function and you can recall or print
the results to the screen.

1 > print(Answer)
[1] 3

If you give R the name of some object it knows you don’t even have to use the print() function.
Just type in the name and R will do it’s thing.

1 > Answer
[1] 3

Whether you know it or not you have now already created an object of the vector type (of length 1).
We can verify this with the is() function. When supplied with the name of an object, this function
will tell you what type of object we have as well as its mode.

1 > is(Answer)
[1] "numeric" "vector"

Recall: 1, 2, 3, or 16 are internal objects. Try it!

1 > is(3)
[1] "numeric" "vector"

Named objects behave just like the ones R already knows. This is pretty useful:

1 > Answer * 2
[1] 6

Or . . .

1 > Answer2 <- Answer * sqrt(Answer)
2 > Answer2

[1] 5.196152

20

Keeping Track of Objects

To see what objects you have created (the ones R stored in active memory) you can use the ls()
function.

1 > ls()
[1] "Answer" "Answer2"

If you want to remove an object from memory use the rm() function. Be very careful. This will
delete thing permanently. Don’t delete things you need.

1 > rm(Answer2)
2 > ls()

[1] "Answer"

If you want to remove all objects from active memory this will do the trick:

1 > rm(list = ls())
>

3.3.2 Real Vectors

So far we have only created trivial vectors of length 1. Let’s assign some longer ones. To do this you
will use the c() function. The “c” stands for concatenate, and you can string a bunch of elements
together, separated by commas.

1 > Vector1 <- c(1,2,3,4,5,6,7,8,9,10)
2 > Vector1

[1] 1 2 3 4 5 6 7 8 9 10

How about a character vector?

1 > Vector2 <- c("a", "b", "c", "d")
2 > Vector2

[1] "a" "b" "c" "d"

Or ...

1 > Vector3 <- c("1", "2", "3", "4")
2 > Vector3

[1] "1" "2" "3" "4"

21

You can also string multiple vectors together with the c() function.

1 > Vector4 <- c(Vector2 , Vector3 , Vector2 , Vector2 , Vector2)
2 > Vector4

[1] "a" "b" "c" "d" "1" "2" "3" "4" "a" "b" "c" "d" "a"
[14] "b" "c" "d" "a" "b" "c" "d"

Vector Operations

Most standard mathematical functions work with vectors.

1 > Vector1 + Vector1
[1] 2 4 6 8 10 12 14 16 18 20

1 > Vector1 / Vector1
[1] 1 1 1 1 1 1 1 1 1 1

1 > log(Vector1)
[1] 0.0000000 0.6931472 1.0986123 1.3862944 1.6094379
[6] 1.7917595 1.9459101 2.0794415 2.1972246 2.3025851

Here we are nesting the log() function inside the round() function.

1 > round(log(Vector1))
[1] 0 1 1 1 2 2 2 2 2 2

The round() function takes an argument (digit) to specify how many decimals to display. It de-
faults to 0. Let’s see a few more digits.

1 > round(log(Vector1), digit = 3)
[1] 0.000 0.693 1.099 1.386 1.609 1.792 1.946 2.079 2.197

[10] 2.303

22

To do other useful things to vectors consider these functions:

Function Description
sum() sums of the elements of the vector
prod() product of the elements of the vector
min() minimum of the elements of the vector
max() maximum of the elements of the vector
mean() mean of the elements
median() median of the elements
range() the range of the vector
sd() the standard deviation
var() the variance (on n-1)
cov() the covariance (takes two inputs cov(x,y))
cor() the correlation coefficient (takes two imputs cor(x,y))
sort() sorts the vector (argument: decreasing = FALSE)
length() returns the length of the vector
summary() returns summary statistics
which() returns the index after evaluating a logical statement
unique() returns a vector of all the unique elements of the input

1 > sum(Vector1)
[1] 55

2 > prod(Vector1)
[1] 3628800

3 > median(Vector1)
[1] 5.5

4 > sd(Vector1)
[1] 3.02765

5 > sort(Vector1 , decreasing = TRUE)
[1] 10 9 8 7 6 5 4 3 2 1

6 > length(Vector1)
[1] 10

7 > summary(Vector1)
Min. 1st Qu. Median Mean 3rd Qu. Max.
1.00 3.25 5.50 5.50 7.75 10.00

8 >which(Vector1 >= 5) # note this returns the index not the
elements (try it with Vector2)

[1] 5 6 7 8 9 10

23

Simplifying Vector Creation

Most of the time using the c() function will be tedious as you don’t want to manually type all ele-
ments of a vector. Luckily the good folks responsible for R have thought of you.

You can use the colon to tell R to create an integer vector.

1 > 1:100
[1] 1 2 3 4 5 6 7 8 9 10 11 12 13 14

[15] 15 16 17 18 19 20 21 22 23 24 25 26 27 28
[29] 29 30 31 32 33 34 35 36 37 38 39 40 41 42
[43] 43 44 45 46 47 48 49 50 51 52 53 54 55 56
[57] 57 58 59 60 61 62 63 64 65 66 67 68 69 70
[71] 71 72 73 74 75 76 77 78 79 80 81 82 83 84
[85] 85 86 87 88 89 90 91 92 93 94 95 96 97 98
[99] 99 100

Or the seq() function, which is more general and has some neat features.

1 > seq(from = 0, to = 10) # you can drop the argment names
[1] 0 1 2 3 4 5 6 7 8 9 10

2 > seq(0, 10)
[1] 0 1 2 3 4 5 6 7 8 9 10

3 > seq(0, 10, by = 2) # the 'by ' argument let 's you set the
4 # increments

[1] 0 2 4 6 8 10

5 > seq(0, 10, length.out = 25) # the 'length.out ' argument
6 # specifies the length of the
7 # vector and R figures out the
8 # increments itself

[1] 0.0000000 0.4166667 0.8333333 1.2500000 1.6666667
[6] 2.0833333 2.5000000 2.9166667 3.3333333 3.7500000

[11] 4.1666667 4.5833333 5.0000000 5.4166667 5.8333333
[16] 6.2500000 6.6666667 7.0833333 7.5000000 7.9166667
[21] 8.3333333 8.7500000 9.1666667 9.5833333 10.0000000

24

Another useful function is rep() which allows you to repeat things.

1 > rep(0, time = 10)
[1] 0 0 0 0 0 0 0 0 0 0

2 > rep("Hello", 3) # as always you can drop the argument name
[1] "Hello" "Hello" "Hello"

3 > rep(Vector1 , 2) # repeating Vector 1 twice
[1] 1 2 3 4 5 6 7 8 9 10 1 2 3 4 5 6 7 8 9

[20] 10

4 > rep(Vector2 , each = 2) # we can repeat each element as well

[1] "a" "a" "b" "b" "c" "c" "d" "d"

Indexing

Sometimes you do not want to print or manipulate an entire vector. This is where indexing comes
in. Indexing vectors is done with []. Check it out.

1 > Vector6 <- c("The", "Starlab", "Fellow", "is", "a Fool.")
2 > Vector6

[1] "The" "Starlab" "Fellow" "is" "a Fool"

3 > length(Vector6) # how long is Vector6
[1] 5

4 > Vector6 [3] # with the bracket we reference the third
element

[1] "Fellow"

5 > Vector6 [2:4] # we can reference a sequence of elements
[1] "Starlab" "Fellow" "is"

6 > Vector6[c(1,3,4)] # or any elements we like
[1] "The" "Fellow" "is"

7 > Vector6 [-2] # all except the 2nd element
[1] "The" "Fellow" "is" "a Fool."

8 > Vector6 [5] <- "great." # and we can change elements
9 > Vector6

[1] "The" "Starlab" "Fellow" "is" "great."

25

Logical operators come in handy when indexing:

1 > Vector7 <- c(1, 1, 2, 3, 4, 4.5, 6, 6, 10)
2 > Vector7

[1] 1.0 1.0 2.0 3.0 4.0 4.5 6.0 6.0 10.0

3 > Vector7[Vector7 == 1]
[1] 1 1

4 > Vector7[Vector7 >= 4]
[1] 4.0 4.5 6.0 6.0 10.0

5 > Vector7[Vector7 != sqrt (16) & Vector7 > 2]
[1] 3.0 4.5 6.0 6.0 10.0

More Functions

Consider the following three functions: na.omit(), subset(), and sample(). This will become
very useful later when dealing with real data. Let’s make a new vector called foo:

1 > foo <- c(2, 3, 4, 3, NA, NA, 6, 6, 10, 11, 2, NA, 4, 3)
2 > foo

[1] 2 3 4 3 NA NA 6 6 10 11 2 NA 4 3

3 > max(foo) # this won 't work because many function can 't deal
with NAs

[1] NA

4 > summary(foo) # this works
Min. 1st Qu. Median Mean 3rd Qu. Max. NA 's

2.000 3.000 4.000 4.909 6.000 11.000 3

This is where the na.omit() function comes in. This function returns the vector supressing the NAs
and adds an attribute to it called na.action.

1 > na.omit(foo)
[1] 2 3 4 3 6 6 10 11 2 4 3
attr(,"na.action ")
[1] 5 6 12
attr(,"class")
[1] "omit"

26

This is helpful because now we can compute all those functions that break when they encounter
NAs. Instead of supplying the object foo we can supply the object returned by na.omit().

1 > max(na.omit(foo))
[1] 11

The summary() function is useful check whether NAs are present in your object. The is.na() func-
tion is more powerful. Combined with the subset() function we can remove the NAs manually.
This requires you to write a logical statement. The first argument you need to supply is the object
you want to subset. The second should be the logical statement R should evaluate.

1 >is.na(foo)
[1] FALSE FALSE FALSE FALSE TRUE TRUE FALSE FALSE
[9] FALSE FALSE FALSE TRUE FALSE FALSE

2 > foo.noNA <- subset(foo , is.na(foo)==FALSE)
3 > foo.noNA

[1] 2 3 4 3 6 6 10 11 2 4 3

Of course the subset() function can be used for more than NA removal. Let’s use it to find numbers
divisible by 7.

1 > X <- 1:500 # creating a vector from 1 to 500
2 > Multiple7 <- subset(X, X%%7==0) # recall the modulo

operator
3 > Multiple7

[1] 7 14 21 28 35 42 49 56 63 70 77 84
[13] 91 98 105 112 119 126 133 140 147 154 161 168
[25] 175 182 189 196 203 210 217 224 231 238 245 252
[37] 259 266 273 280 287 294 301 308 315 322 329 336
[49] 343 350 357 364 371 378 385 392 399 406 413 420
[61] 427 434 441 448 455 462 469 476 483 490 497

The sample() function will also come in handy later. It takes the following arguments: size for the
sample size, and replace = TRUE for whether you want to sample with or without replacement.
Let’s sample from our vector, Multiple7. Obviously, your output may/will look different than what
I got here.

1 > sample(Multiple7 , size = 10, replace = FALSE)
[1] 497 238 322 63 77 245 455 126 490 392

27

The print(), cat(), and paste() Functions

We already know that the print() function prints an object to the screen by explicitly creating an
object in the computers active memory. The paste() function is a bit more useful as you can paste
multiple objects together and print them to the screen (by creating an implicit object - a character
vector). The cat() function does the same thing but it does not create an object in the computer’s
active memory.

1 > print (0.2)
[1] 0.2

2 > X <- 0.2
3 > print(X)

[1] 0.2

4 > paste(X, "is equal to", X)
[1] "0.2 is equal to 0.2"

5 > cat(X, "is equal to", X) # notice the missing [1] below
0.2 is equal to 0.2 >

28

