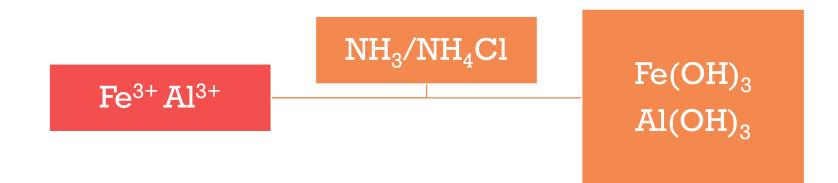
Separation by Precipitation

Ideally, a gravimetric precipitating agent should react specifically or at least selectively with the analyte.

Reagent	Solution	Analyte	Specific or Selective
AgNO ₃	Acidic	I- Br- Cl- SCN-	Selective
Dimethylglyoxime	Alkaline	Ni^{2+}	Specific


- Separations by precipitation require large solubility differences between the analyte and potential interferents.
- The theoretical feasibility of this type of separation can be determined by solubility calculations.
- Unfortunately, several other factors (coprecipitation phenomena) may preclude the use of precipitation to achieve a separation.
- Finally, when precipitates form as colloidal suspensions, coagulation may be difficult and slow, particularly when the isolation of a small quantity of a solid phase is attempted.
- Many precipitating agents have been used for quantitative inorganic separations.

Separations Based on Control of Acidity

- Many separations based on pH control are in theory possible. In practice, these separations can be grouped in three categories:
 - those made in relatively concentrated solutions of strong acids,
 - those made in buffered solutions at intermediate pH values
 - those made in concentrated solutions of sodium or potassium hydroxide

Sulfide Separations

- Sulfide ion forms precipitates with heavy metal cations that have solubility products that vary from 10⁻¹⁰ to 10⁻⁹⁰ or smaller.
- In addition, the concentration of S²⁻ can be varied over a range of about 0.1 M to 10⁻²² M by controlling the pH of a saturated solution of hydrogen sulfide.
- To illustrate the use of hydrogen sulfide to separate cations based on pH control, consider the precipitation of the divalent cation M²⁺ from a solution that is kept saturated with hydrogen sulfide by bubbling the gas continuously through the solution.

Separations by Other Inorganic Precipitants

 No other inorganic ions are as generally useful for separations as hydroxide and sulfide ions.

- Phosphate, carbonate, and oxalate ions are often used as precipitants for cations, but they are not selective.
- Chloride and sulfate are useful because of their highly selective behavior.

Separations by Organic Precipitants

• There are two types of organic reagents:

- one forms slightly soluble nonionic products called coordination compounds,
- the other forms products in which the bonding between the inorganic species and the reagent is largely ionic.

8-Hydroxyquinoline (Oxine)

- Two dozen cations form sparingly soluble chelates with 8hydroxyquinoline.
- The solubilities of metal 8-hydroxyquinolates vary widely from cation to cation and are pH dependent because 8-hydroxyquinoline is always deprotonated during a chelation reaction.

Dimethylglyoxime

- Dimethylglyoxime is an organic precipitating agent of unparalleled specificity.
- Only nickel(II) is precipitated from a weakly alkaline solution.

Sodium Tetraphenylborate

- Sodium tetraphenylborate is an important example of an organic precipitating reagent that forms salt-like precipitates.
- In cold mineral acid solutions, it is a near-specific precipitating agent for potassium and ammonium ions.

