COM/BLM 453 Data Mining Asst. Prof. Dr. Bulent TUGRUL btugrul@eng.ankara.edu.tr

Slides are mainly based on: Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Vipin Kumar

Pearson, 1st Edition, 2005

Data Mining Classification: Alternative Techniques

Lecture Notes for Chapter 5

Introduction to Data Mining by Tan, Steinbach, Kumar

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	2
© Tan, Steinbach, Kumar	Introduction to Data Mining	4/18/2004	2

Rule-Based Classifier

- Classify records by using a collection of "if...then..." rules
- Rule: (Condition) $\rightarrow y$
 - where
 - Condition is a conjunctions of attributes
 - y is the class label
 - LHS: rule antecedent or condition
 - RHS: rule consequent
 - Examples of classification rules:
 - (Blood Type=Warm) \land (Lay Eggs=Yes) \rightarrow Birds
 - ♦ (Taxable Income < 50K) \land (Refund=Yes) \rightarrow Evade=No

Rule-based Classifier (Example)

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
human	warm	yes	no	no	mammals
python	cold	no	no	no	reptiles
salmon	cold	no	no	yes	fishes
whale	warm	yes	no	yes	mammals
frog	cold	no	no	sometimes	amphibians
komodo	cold	no	no	no	reptiles
bat	warm	yes	yes	no	mammals
pigeon	warm	no	yes	no	birds
cat	warm	yes	no	no	mammals
leopard shark	cold	yes	no	yes	fishes
turtle	cold	no	no	sometimes	reptiles
penguin	warm	no	no	sometimes	birds
porcupine	warm	yes	no	no	mammals
eel	cold	no	no	yes	fishes
salamander	cold	no	no	sometimes	amphibians
gila monster	cold	no	no	no	reptiles
platypus	warm	no	no	no	mammals
owl	warm	no	yes	no	birds
dolphin	warm	yes	no	yes	mammals
eagle	warm	no	yes	no	birds

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles R5: (Live in Water = sometimes) \rightarrow Amphibians

‹#>

Application of Rule-Based Classifier

 A rule r covers an instance x if the attributes of the instance satisfy the condition of the rule

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
hawk	warm	no	yes	no	?
grizzly bear	warm	yes	no	no	?

The rule R1 covers a hawk => Bird

The rule R3 covers the grizzly bear => Mammal

‹#>

Rule Coverage and Accuracy

- Coverage of a rule:
 - Fraction of records that satisfy the antecedent of a rule
- Accuracy of a rule:
 - Fraction of records that satisfy both the antecedent and consequent of a rule

Tid	Refund	Marital Status	Taxable Income	Class
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

(Status=Single) \rightarrow No

Coverage = 40%, Accuracy = 50%

How does Rule-based Classifier Work?

R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds

R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes

R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals

R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles

R5: (Live in Water = sometimes) \rightarrow Amphibians

Name	Blood Type	Give Birth	Can Fly	Live in Water	Class
lemur	warm	yes	no	no	?
turtle	cold	no	no	sometimes	?
dogfish shark	cold	yes	no	yes	?

A lemur triggers rule R3, so it is classified as a mammal

A turtle triggers both R4 and R5

A dogfish shark triggers none of the rules

Characteristics of Rule-Based Classifier

• Mutually exclusive rules

- Classifier contains mutually exclusive rules if the rules are independent of each other
- Every record is covered by at most one rule
- Exhaustive rules
 - Classifier has exhaustive coverage if it accounts for every possible combination of attribute values
 - Each record is covered by at least one rule

From Decision Trees To Rules

Classification Rules

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Rules are mutually exclusive and exhaustive Rule set contains as much information as the tree

Rules Can Be Simplified

Initial Rule:(Refund=No) \land (Status=Married) \rightarrow NoSimplified Rule:(Status=Married) \rightarrow No

© Tan,Steinbach,	Kumar
------------------	-------

4/18/2004

‹#›

Effect of Rule Simplification

- Rules are no longer mutually exclusive
 - A record may trigger more than one rule
 - Solution?
 - Ordered rule set
 - Unordered rule set use voting schemes
- Rules are no longer exhaustive
 - A record may not trigger any rules
 - Solution?
 - Use a default class

(#)

Ordered Rule Set

• Rules are rank ordered according to their priority

- An ordered rule set is known as a decision list
- When a test record is presented to the classifier
 - It is assigned to the class label of the highest ranked rule it has triggered
 - If none of the rules fired, it is assigned to the default class

```
R1: (Give Birth = no) \land (Can Fly = yes) \rightarrow Birds
         R2: (Give Birth = no) \land (Live in Water = yes) \rightarrow Fishes
         R3: (Give Birth = yes) \land (Blood Type = warm) \rightarrow Mammals
         R4: (Give Birth = no) \land (Can Fly = no) \rightarrow Reptiles
         R5: (Live in Water = sometimes) \rightarrow Amphibians
     Name
                     Blood Type
                                     Give Birth
                                                     Can Fly
                                                                Live in Water
                                                                                    Class
                 cold
turtle
                                                                sometimes
                                                                                      ?
                                         no
                                                       no
```

© Tan,Steinbach, Kumar

‹#>

Rule Ordering Schemes

Rule-based ordering

- Individual rules are ranked based on their quality

Class-based ordering

Rules that belong to the same class appear together

Rule-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

(Refund=No, Marital Status={Married}) ==> No

Class-based Ordering

(Refund=Yes) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income<80K) ==> No

(Refund=No, Marital Status={Married}) ==> No

(Refund=No, Marital Status={Single,Divorced}, Taxable Income>80K) ==> Yes

Building Classification Rules

• Direct Method:

- Extract rules directly from data
- e.g.: RIPPER, CN2, Holte's 1R
- Indirect Method:
 - Extract rules from other classification models (e.g. decision trees, neural networks, etc).
 - e.g: C4.5rules

‹#>

Direct Method: Sequential Covering

- 1. Start from an empty rule
- 2. Grow a rule using the Learn-One-Rule function
- 3. Remove training records covered by the rule
- 4. Repeat Step (2) and (3) until stopping criterion is met

Example of Sequential Covering

(i) Original Data

(ii) Step 1

0	Tan,Steinbach,	Kumar
---	----------------	-------

Example of Sequential Covering...

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004 (#>	
------------------------	-----------------------------	---------------	--

Aspects of Sequential Covering

- Rule Growing
- Instance Elimination
- Rule Evaluation
- Stopping Criterion
- Rule Pruning

Rule Growing

• Two common strategies

|--|

Rule Evaluation

Metrics: – Accuracy	$=\frac{n_c}{n}$
 Laplace 	$=\frac{n_c+1}{n+k}$
 M-estimate 	$=\frac{n_c + kp}{n+k}$

n : Number of instances covered by rule *n_c* : Number of instances covered by rule *k* : Number of classes *p* : Prior probability

Summary of Direct Method

- Grow a single rule
- Remove Instances from rule
- Prune the rule (if necessary)
- Add rule to Current Rule Set

Repeat

‹#>

Indirect Methods

C	Tan	,Stein	bach,	Kumar
---	-----	--------	-------	-------

Example

Name	Give Birth	Lay Eggs	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	no	yes	mammals
python	no	yes	no	no	no	reptiles
salmon	no	yes	no	yes	no	fishes
whale	yes	no	no	yes	no	mammals
frog	no	yes	no	sometimes	yes	amphibians
komodo	no	yes	no	no	yes	reptiles
bat	yes	no	yes	no	yes	mammals
pigeon	no	yes	yes	no	yes	birds
cat	yes	no	no	no	yes	mammals
leopard shark	yes	no	no	yes	no	fishes
turtle	no	yes	no	sometimes	yes	reptiles
penguin	no	yes	no	sometimes	yes	birds
porcupine	yes	no	no	no	yes	mammals
eel	no	yes	no	yes	no	fishes
salamander	no	yes	no	sometimes	yes	amphibians
gila monster	no	yes	no	no	yes	reptiles
platypus	no	yes	no	no	yes	mammals
owl	no	yes	yes	no	yes	birds
dolphin	yes	no	no	yes	no	mammals
eagle	no	yes	yes	no	yes	birds

© Tan,Steinbach, Kumar

4/18/2004

‹#>

C4.5 versus C4.5rules versus RIPPER

(Give Birth=No, Can Fly=Yes) \rightarrow Birds (Give Birth=No, Live in Water=Yes) \rightarrow Fishes (Give Birth=Yes) \rightarrow Mammals (Give Birth=No, Can Fly=No, Live in Water=No) \rightarrow Reptiles $() \rightarrow Amphibians$

RIPPER:

(Live in Water=Yes) \rightarrow Fishes

(Have Legs=No) \rightarrow Reptiles

(Give Birth=No, Can Fly=No, Live In Water=No) \rightarrow Reptiles

(Can Fly=Yes,Give Birth=No) \rightarrow Birds

 $() \rightarrow Mammals$

C4.5 versus C4.5 rules versus RIPPER

C4.5 and C4.5rules:

			PREDICT	ED CLAS	S	
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	2	0	0	0	0
CLASS	Fishes	0	2	0	0	1
	Reptiles	1	0	3	0	0
	Birds	1	0	0	3	0
	Mammals	0	0	1	0	6

RIPPER:

			PREDICT	ED CLAS	S	
		Amphibians	Fishes	Reptiles	Birds	Mammals
ACTUAL	Amphibians	0	0	0	0	2
CLASS	Fishes	0	3	0	0	0
	Reptiles	0	0	3	0	1
	Birds	0	0	1	2	1
	Mammals	0	2	1	0	4

Advantages of Rule-Based Classifiers

- As highly expressive as decision trees
- Easy to interpret
- Easy to generate
- Can classify new instances rapidly
- Performance comparable to decision trees

Instance-Based Classifiers

Instance Based Classifiers

- Examples:
 - Rote-learner

 Memorizes entire training data and performs classification only if attributes of record match one of the training examples exactly

Nearest neighbor

Uses k "closest" points (nearest neighbors) for performing classification

Nearest Neighbor Classifiers

• Basic idea:

If it walks like a duck, quacks like a duck, then it's probably a duck

Nearest-Neighbor Classifiers

- Requires three things
 - The set of stored records
 - Distance Metric to compute distance between records
 - The value of k, the number of nearest neighbors to retrieve
- To classify an unknown record:
 - Compute distance to other training records
 - Identify *k* nearest neighbors
 - Use class labels of nearest neighbors to determine the class label of unknown record (e.g., by taking majority vote)

‹#>

Definition of Nearest Neighbor

(a) 1-nearest neighbor (b) 2-nearest neighbor (c) 3-nearest neighbor

K-nearest neighbors of a record x are data points that have the k smallest distance to x

1 nearest-neighbor

Voronoi Diagram

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	<#>
------------------------	-----------------------------	-----------	-----

Nearest Neighbor Classification

- Compute distance between two points:
 - Euclidean distance

$$d(p,q) = \sqrt{\sum_{i} (p_i - q_i)^2}$$

- Determine the class from nearest neighbor list
 - take the majority vote of class labels among the k-nearest neighbors
 - Weigh the vote according to distance
 - weight factor, $w = 1/d^2$

Nearest Neighbor Classification...

- Choosing the value of k:
 - If k is too small, sensitive to noise points
 - If k is too large, neighborhood may include points from other classes

Nearest Neighbor Classification...

- Scaling issues
 - Attributes may have to be scaled to prevent distance measures from being dominated by one of the attributes
 - Example:
 - height of a person may vary from 1.5m to 1.8m
 - weight of a person may vary from 90lb to 300lb
 - income of a person may vary from \$10K to \$1M

Nearest Neighbor Classification...

- Problem with Euclidean measure:
 - High dimensional data
 - curse of dimensionality
 - Can produce counter-intuitive results

Solution: Normalize the vectors to unit length

© Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 (#)
--
Nearest neighbor Classification...

- k-NN classifiers are lazy learners
 - It does not build models explicitly
 - Unlike eager learners such as decision tree induction and rulebased systems
 - Classifying unknown records are relatively expensive

Bayes Classifier

- A probabilistic framework for solving classification problems
- Conditional Probability:

$$P(C \mid A) = \frac{P(A, C)}{P(A)}$$
$$P(A \mid C) = \frac{P(A, C)}{P(C)}$$

• Bayes theorem:

$$P(C \mid A) = \frac{P(A \mid C)P(C)}{P(A)}$$

‹#›

Example of Bayes Theorem

- Given:
 - A doctor knows that meningitis causes stiff neck 50% of the time
 - Prior probability of any patient having meningitis is 1/50,000
 - Prior probability of any patient having stiff neck is 1/20
- If a patient has stiff neck, what's the probability he/she has meningitis?

$$P(M \mid S) = \frac{P(S \mid M)P(M)}{P(S)} = \frac{0.5 \times 1/50000}{1/20} = 0.0002$$

Bayesian Classifiers

- Consider each attribute and class label as random variables
- Given a record with attributes $(A_1, A_2, ..., A_n)$
 - Goal is to predict class C
 - Specifically, we want to find the value of C that maximizes P(C| A₁, A₂,...,A_n)
- Can we estimate P(C| A₁, A₂,...,A_n) directly from data?

Bayesian Classifiers

• Approach:

 compute the posterior probability P(C | A₁, A₂, ..., A_n) for all values of C using the Bayes theorem

$$P(C \mid A_{1}A_{2}...A_{n}) = \frac{P(A_{1}A_{2}...A_{n} \mid C)P(C)}{P(A_{1}A_{2}...A_{n})}$$

- Choose value of C that maximizes $P(C \mid A_1, A_2, ..., A_n)$
- Equivalent to choosing value of C that maximizes $P(A_1, A_2, ..., A_n | C) P(C)$

• How to estimate
$$P(A_1, A_2, ..., A_n | C)$$
?

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	
------------------------	-----------------------------	-----------	--

Naïve Bayes Classifier

- Assume independence among attributes A_i when class is given:
 - $P(A_1, A_2, ..., A_n | C) = P(A_1 | C_j) P(A_2 | C_j) ... P(A_n | C_j)$
 - Can estimate $P(A_i | C_j)$ for all A_i and C_j .
 - New point is classified to C_i if $P(C_i) \prod P(A_i | C_i)$ is maximal.

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	Νο
2	No	Married	100K	Νο
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	Νο
10	No	Single	90K	Yes

• Class:
$$P(C) = N_c/N$$

- e.g., $P(No) = 7/10$,
 $P(Yes) = 3/10$

• For discrete attributes:

 $P(A_i | C_k) = |A_{ik}| / N_{c_k}$

 where |A_{ik}| is number of instances having attribute A_i and belongs to class C_k

– Examples:

P(Status=Married|No) = 4/7 P(Refund=Yes|Yes)=0

How to Estimate Probabilities from Data?

- For continuous attributes:
 - Discretize the range into bins
 - one ordinal attribute per bin
 - violates independence assumption
 - Two-way split: (A < v) or (A > v)
 - choose only one of the two splits as new attribute
 - Probability density estimation:
 - Assume attribute follows a normal distribution
 - Use data to estimate parameters of distribution (e.g., mean and standard deviation)
 - \blacklozenge Once probability distribution is known, can use it to estimate the conditional probability P(A_i|c)

k

How to Estimate Probabilities from Data?

Tid	Refund	Marital Status	Taxable Income	Evade
1	Yes	Single	125K	No
2	No	Married	100K	No
3	No	Single	70K	No
4	Yes	Married	120K	No
5	No	Divorced	95K	Yes
6	No	Married	60K	No
7	Yes	Divorced	220K	No
8	No	Single	85K	Yes
9	No	Married	75K	No
10	No	Single	90K	Yes

• Normal distribution:

- One for each (A_i,c_i) pair
- For (Income, Class=No):
 - If Class=No
 - sample mean = 110
 - sample variance = 2975

‹#›

$$P(Income = 120 | No) = \frac{1}{\sqrt{2\pi}(54.54)} e^{\frac{(120-110)^2}{2(2975)}} = 0.0072$$

Example of Naïve Bayes Classifier

Given a Test Record:

$$X = (\text{Refund} = \text{No}, \text{Married}, \text{Income} = 120\text{K})$$

naive Bayes Classifier:

```
P(\text{Refund}=\text{Yes}|\text{No}) = 3/7
P(Refund=No|No) = 4/7
P(Refund=Yes|Yes) = 0
P(Refund=No|Yes) = 1
P(Marital Status=Single|No) = 2/7
P(Marital Status=Divorced|No)=1/7
P(Marital Status=Married|No) = 4/7
P(Marital Status=Single|Yes) = 2/7
P(Marital Status=Divorced|Yes)=1/7
P(Marital Status=Married|Yes) = 0
For taxable income:
If class=No:
               sample mean=110
               sample variance=2975
If class=Yes:
               sample mean=90
               sample variance=25
```

```
    P(X|Class=No) = P(Refund=No|Class=No)
× P(Married| Class=No)
× P(Income=120K| Class=No)
= 4/7 × 4/7 × 0.0072 = 0.0024
    P(X|Class=Yes) = P(Refund=No| Class=Yes)
```

```
P(X|Class=Yes) = P(Refund=No|Class=Yes) \\ \times P(Married|Class=Yes) \\ \times P(Income=120K|Class=Yes) \\ = 1 \times 0 \times 1.2 \times 10^{-9} = 0
```

```
Since P(X|No)P(No) > P(X|Yes)P(Yes)
Therefore P(No|X) > P(Yes|X)
```

```
=> Class = No
```

Naïve Bayes Classifier

- If one of the conditional probability is zero, then the entire expression becomes zero
- Probability estimation:

Original :
$$P(A_i | C) = \frac{N_{ic}}{N_c}$$

Laplace : $P(A_i | C) = \frac{N_{ic} + 1}{N_c + c}$
m - estimate : $P(A_i | C) = \frac{N_{ic} + mp}{N_c + m}$
c: number of classes
p: prior probability
m: parameter

‹#›

Example of Naïve Bayes Classifier

Name	Give Birth	Can Fly	Live in Water	Have Legs	Class
human	yes	no	no	yes	mammals
python	no	no	no	no	non-mammals
salmon	no	no	yes	no	non-mammals
whale	yes	no	yes	no	mammals
frog	no	no	sometimes	yes	non-mammals
komodo	no	no	no	yes	non-mammals
bat	yes	yes	no	yes	mammals
pigeon	no	yes	no	yes	non-mammals
cat	yes	no	no	yes	mammals
leopard shark	yes	no	yes	no	non-mammals
turtle	no	no	sometimes	yes	non-mammals
penguin	no	no	sometimes	yes	non-mammals
porcupine	yes	no	no	yes	mammals
eel	no	no	yes	no	non-mammals
salamander	no	no	sometimes	yes	non-mammals
gila monster	no	no	no	yes	non-mammals
platypus	no	no	no	yes	mammals
owl	no	yes	no	yes	non-mammals
dolphin	yes	no	yes	no	mammals
eagle	no	yes	no	yes	non-mammals

A: attributes

M: mammals

N: non-mammals

$$P(A \mid M) = \frac{6}{7} \times \frac{6}{7} \times \frac{2}{7} \times \frac{2}{7} = 0.06$$
$$P(A \mid N) = \frac{1}{13} \times \frac{10}{13} \times \frac{3}{13} \times \frac{4}{13} = 0.0042$$
$$P(A \mid M)P(M) = 0.06 \times \frac{7}{20} = 0.021$$
$$P(A \mid N)P(N) = 0.004 \times \frac{13}{20} = 0.0027$$

P(A|M)P(M) > P(A|N)P(N)

‹#>

=> Mammals

C	Tan	,Ste	einba	ach,	Kumar
---	-----	------	-------	------	-------

Give Birth

ves

Can Fly

no

ves

Live in Water

Have Legs

no

Class

?

Naïve Bayes (Summary)

- Robust to isolated noise points
- Handle missing values by ignoring the instance during probability estimate calculations
- Robust to irrelevant attributes
- Independence assumption may not hold for some attributes
 - Use other techniques such as Bayesian Belief Networks (BBN)

(#)

Artificial Neural Networks (ANN)

Output Y is 1 if at least two of the three inputs are equal to 1.

|--|--|--|--|

Artificial Neural Networks (ANN)

$$Y = I(0.3X_{1} + 0.3X_{2} + 0.3X_{3} - 0.4 > 0)$$

where $I(z) = \begin{cases} 1 & \text{if } z \text{ is true} \\ 0 & \text{otherwise} \end{cases}$

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	<# >		
------------------------	-----------------------------	-----------	----------------	--	--

Artificial Neural Networks (ANN)

- Model is an assembly of interconnected nodes and weighted links
- Output node sums up each of its input value according to the weights of its links

Perceptron Model

$$Y = I(\sum_{i} w_{i}X_{i} - t) \text{ or }$$
$$Y = sign(\sum_{i} w_{i}X_{i} - t)$$

General Structure of ANN

Algorithm for learning ANN

• Initialize the weights
$$(w_0, w_1, ..., w_k)$$

- Adjust the weights in such a way that the output of ANN is consistent with class labels of training examples
 - Objective function:

$$E = \sum \left[Y_i - f(w_i, X_i) \right]^2$$

- Find the weights w_i 's that minimize the above objective function
 - e.g., backpropagation algorithm (see lecture notes)

• Find a linear hyperplane (decision boundary) that will separate the data

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004 <#>	
------------------------	-----------------------------	---------------	--

• One Possible Solution

• Another possible solution

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	
------------------------	-----------------------------	-----------	--

• Other possible solutions

ົງ Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	<#>
-------------------------	-----------------------------	-----------	-----

- Which one is better? B1 or B2?
- How do you define better?

© Tan,Steinbach, Kumar

Introduction to Data Mining

• Find hyperplane maximizes the margin => B1 is better than B2

© Tan, Steinbach, Kumar Introduction to Data Mining	4/18/2004	
---	-----------	--

• We want to maximize:
Margin =
$$\frac{2}{\|\vec{w}\|^2}$$

- Which is equivalent to minimizing:
 $L(w) = \frac{\|\vec{w}\|^2}{2}$

- But subjected to the following constraints:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 \end{cases}$$

This is a constrained optimization problem

- Numerical approaches to solve it (e.g., quadratic programming)

|--|

• What if the problem is not linearly separable?

© Tan,Steinbach, Kumar

Introduction to Data Mining

- What if the problem is not linearly separable?
 - Introduce slack variables
 - Need to minimize:

$$L(w) = \frac{\|\vec{w}\|^2}{2} + C\left(\sum_{i=1}^N \xi_i^k\right)$$

Subject to:

$$f(\vec{x}_i) = \begin{cases} 1 & \text{if } \vec{w} \bullet \vec{x}_i + b \ge 1 - \xi_i \\ -1 & \text{if } \vec{w} \bullet \vec{x}_i + b \le -1 + \xi_i \end{cases}$$

T	an,Stei	nbach,	Kumar	
---	---------	--------	-------	--

‹#›

Nonlinear Support Vector Machines

• What if decision boundary is not linear?

© Tan,Steinbach, Kumar

Nonlinear Support Vector Machines

© Tan, Steinbach, Kumar

• Transform data into higher dimensional space

Ensemble Methods

• Construct a set of classifiers from the training data

 Predict class label of previously unseen records by aggregating predictions made by multiple classifiers

General Idea

© Tan,Steinbach, Kumar

4/18/2004

Why does it work?

- Suppose there are 25 base classifiers
 - Each classifier has error rate, $\epsilon = 0.35$
 - Assume classifiers are independent
 - Probability that the ensemble classifier makes a wrong prediction:

$$\sum_{i=13}^{25} {\binom{25}{i}} \varepsilon^{i} (1-\varepsilon)^{25-i} = 0.06$$

	© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	<# >
--	------------------------	-----------------------------	-----------	----------------

Examples of Ensemble Methods

- How to generate an ensemble of classifiers?
 - Bagging
 - Boosting

© Tan,Steinbach, Kumar	Introduction to Data Mining	4/18/2004	

Bagging

• Sampling with replacement

Original Data	1	2	3	4	5	6	7	8	9	10
Bagging (Round 1)	7	8	10	8	2	5	10	10	5	9
Bagging (Round 2)	1	4	9	1	2	3	2	7	3	2
Bagging (Round 3)	1	8	5	10	5	5	9	6	3	7

• Build classifier on each bootstrap sample

Each sample has probability (1 – 1/n)ⁿ of being selected

© Ta	n,Steinbach,	Kumar
------	--------------	-------

‹#>

Boosting

- An iterative procedure to adaptively change distribution of training data by focusing more on previously misclassified records
 - Initially, all N records are assigned equal weights
 - Unlike bagging, weights may change at the end of boosting round
Boosting

- Records that are wrongly classified will have their weights increased
- Records that are classified correctly will have their weights decreased

• Example 4 is hard to classify

• Its weight is increased, therefore it is more likely to be chosen again in subsequent rounds