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What is Cluster Analysis?

e Finding groups of objects such that the objects in a group
will be similar (or related) to one another and different
from (or unrelated to) the objects in other groups

Inter-cluster
Intra-cluster distances are
distances are maximized

minimized @
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Applications of Cluster Analysis

Discovered Clusters

Industry Group

e Understanding

— Group related documents for browsing,
group genes and proteins that have
similar functionality, or group stocks |2
with similar price fluctuations

= W

Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,

Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,
DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,
Micron-Tech-DOWN, Texas-Inst-Down, Tellabs-Inc-Down,
Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,
Sun-DOWN
Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,
ADV-Micro-Device-DOWN, Andrew-Corp-DOWN,
Computer-Assoc-DOWN,Circuit-City-DOWN,
Compag-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,
Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN

Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,
MBNA-Corp-DOWN,Morgan-Stanley-DOWN

Baker-Hughes-UP, Dresser-Inds-UP,Halliburton-HLD-UP,
Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,
Schlumberger-UP

Technologyl-DOWN

Technology2-DOWN

Financial-DOWN

Oil-up

e Summarization
— Reduce the size of large data sets

Clustering precipitation
in Australia
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What is not Cluster Analysis?

e Supervised classification
— Have class label information

e Simple segmentation

— Dividing students into different registration groups
alphabetically, by last name

e Results of a query
— Groupings are a result of an external specification

e Graph partitioning

— Some mutual relevance and synergy, but areas are not
identical
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Notion of a Cluster can be Ambiguous
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Types of Clusterings

e A clustering Is a set of clusters

e Important distinction between hierarchical and
partitional sets of clusters

e Partitional Clustering

— A division data objects into non-overlapping subsets (clusters)
such that each data object is in exactly one subset

e Hierarchical clustering
— A set of nested clusters organized as a hierarchical tree
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Partitional Clustering

Original Points A Partitional Clustering
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Hierarchical Clustering

Traditional Hierarchical Clustering

Non-traditional Hierarchical Clustering

B

pl p2 p3 p4

Traditional Dendrogram

pl p2  p3 p4

Non-traditional Dendrogram
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Other Distinctions Between Sets of Clusters

e EXxclusive versus non-exclusive

— In non-exclusive clusterings, points may belong to multiple
clusters.
— Can represent multiple classes or ‘border’ points

e Fuzzy versus non-fuzzy
— In fuzzy clustering, a point belongs to every cluster with some
weight between 0 and 1

— Weights must sumto 1
— Probabilistic clustering has similar characteristics

e Partial versus complete
— In some cases, we only want to cluster some of the data

o Heterogeneous Versus homogeneous
— Cluster of widely different sizes, shapes, and densities
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Types of Clusters

e Well-separated clusters

e Center-based clusters

e Contiguous clusters

e Density-based clusters

e Property or Conceptual

e Described by an Objective Function
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Types of Clusters: Well-Separated

e Well-Separated Clusters:

— A cluster is a set of points such that any point in a cluster is
closer (or more similar) to every other point in the cluster than
to any point not in the cluster.

3 well-separated clusters
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Types of Clusters: Center-Based

e Center-based

— A ccluster is a set of objects such that an object in a cluster is
closer (more similar) to the “center” of a cluster, than to the
center of any other cluster

— The center of a cluster is often a centroid, the average of all
the points in the cluster, or a medoid, the most “representative”
point of a cluster

4 center-based clusters
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Types of Clusters: Contiguity-Based

e Contiguous Cluster (Nearest neighbor or
Transitive)

— A cluster is a set of points such that a point in a cluster is
closer (or more similar) to one or more other points in the
cluster than to any point not in the cluster.

8 contiguous clusters
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Types of Clusters: Density-Based

e Density-based

— A cluster is a dense region of points, which is separated by
low-density regions, from other regions of high density.

— Used when the clusters are irregular or intertwined, and when
noise and outliers are present.

6 density-based clusters
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Types of Clusters: Conceptual Clusters

e Shared Property or Conceptual Clusters

— Finds clusters that share some common property or represent
a particular concept.

2 Overlapping Circles
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Types of Clusters: Objective Function

e Clusters Defined by an Objective Function

— Finds clusters that minimize or maximize an objective
function.
— Enumerate all possible ways of dividing the points into

clusters and evaluate the goodness' of each potential
set of clusters by using the given objective function.

(NP Hard)
— Can have global or local objectives.
+ Hierarchical clustering algorithms typically have local objectives
+ Partitional algorithms typically have global objectives
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Clustering Algorithms

e K-means and Its variants

e Hierarchical clustering

e Density-based clustering
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K-means Clustering

e Partitional clustering approach

e Each cluster is associated with a (center point)
e Each point is assigned to the cluster with the closest
centroid

e Number of clusters, K, must be specified
e The basic algorithm is very simple

: Select K points as the initial centroids.

: repeat

1
2
3:  Form K clusters by assigning all points to the closest centroid.
4:  Recompute the centroid of each cluster.

5

: until The centroids don’t change
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K-means Clustering — Details

e Initial centroids are often chosen randomly.
—  Clusters produced vary from one run to another.

e The centroid is (typically) the mean of the points in the
cluster.

e ‘Closeness’ is measured by Euclidean distance, cosine
similarity, correlation, etc.

e K-means will converge for common similarity measures
mentioned above.

e Most of the convergence happens in the first few
iterations.

—  Often the stopping condition is changed to ‘Until relatively few
points change clusters’

e ComplexityisO(n*K*|*d)

—  n =number of points, K = number of clusters,
| = number of iterations, d = number of attributes
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Two different K-means Clusterings
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Importance of Choosing Initial Centroids

Iteration 6
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Importance of Choosing Initial Centroids

Iteration 1 Iteration 2 Iteration 3
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Evaluating K-means Clusters

e Most common measure is Sum of Squared Error (SSE)
— For each point, the error is the distance to the nearest cluster
— To get SSE, we square these errors and sum them.

SSE = i > dist*(m;, x)

i=1 XECi
— X s a data point in cluster C;and m; is the representative point for cluster C,
+ can show that m; corresponds to the center (mean) of the cluster
— Given two clusters, we can choose the one with the smallest error

— One easy way to reduce SSE is to increase K, the number of clusters
¢ A good clustering with smaller K can have a lower SSE than a poor clustering with higher K
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Importance of Choosing Initial Centroids ...

lteration 5
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Importance of Choosing Initial Centroids ...

Iteration 1 Iteration 2
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Problems with Selecting Initial Points

e If there are K ‘real’ clusters then the chance of selecting
one centroid from each cluster is small.

—  Chance is relatively small when K is large
— If clusters are the same size, n, then

p_ number of ways to select one centroid from each cluster K Inf K
B number of ways to select K centroids - (Kn)K KK

—  For example, if K = 10, then probability = 10!/101° = 0.00036

—  Sometimes the initial centroids will readjust themselves in
‘right’ way, and sometimes they don't

—  Consider an example of five pairs of clusters
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10 Clusters Example

Ilteration 4
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X

Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Iteration 1 Iteration 2
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Starting with two initial centroids in one cluster of each pair of clusters
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10 Clusters Example

Ilteration 4

r r r [

0 S 10 15 20
X

Starting with some pairs of clusters having three initial centroids, while other have only one.
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10 Clusters Example

Iteration 1 Iteration 2
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Starting with some pairs of clusters having three initial centroids, while other have only one.
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Solutions to Initial Centroids Problem

e Multiple runs
— Helps, but probability is not on your side

e Sample and use hierarchical clustering to determine initial
centroids

e Select more than k initial centroids and then select among these
Initial centroids

— Select most widely separated
e Postprocessing

e Bisecting K-means
— Not as susceptible to initialization issues
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Updating Centers Incrementally

e In the basic K-means algorithm, centroids are updated after all
points are assigned to a centroid

e An alternative is to update the centroids after each assignment
(incremental approach)

— Each assignment updates zero or two centroids
— More expensive

— Introduces an order dependency

— Never get an empty cluster

— Can use “weights” to change the impact
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Pre-processing and Post-processing

e Pre-processing
— Normalize the data
— Eliminate outliers

e Post-processing
— Eliminate small clusters that may represent outliers
— Split ‘loose’ clusters, i.e., clusters with relatively high SSE
— Merge clusters that are ‘close’ and that have relatively low SSE
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Bisecting K-means

e Bisecting K-means algorithm

—  Variant of K-means that can produce a partitional or a
hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.
2: repeat

3:  Select a cluster from the list of clusters

4 for i = 1 to number_of _iterations do

5 Bisect the selected cluster using basic K-means

6: end for

7 Add the two clusters from the bisection with the lowest SSE to the list of clusters.
8

- until Until the list of clusters contains K clusters
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Bisecting K-means Example

lteration 10
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Limitations of K-means

e K-means has problems when clusters are of differing
— Sizes
— Densities
— Non-globular shapes

e K-means has problems when the data contains outliers.
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Limitations of K-means: Differing Sizes

Original Points
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Limitations of K-means: Differing Density
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Limitations of K-means: Non-globular Shapes

Original Points K-means (2 Clusters)
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Overcoming K-means Limitations
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One solution is to use many clusters.
Find parts of clusters, but need to put together.
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Overcoming K-means Limitations
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Overcoming K-means Limitations

Original Points K-means Clusters
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