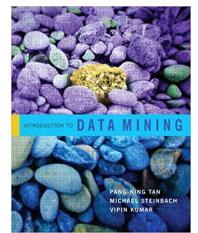
COM/BLM 453 Data Mining Asst. Prof. Dr. Bulent TUGRUL btugrul@eng.ankara.edu.tr

Slides are mainly based on: Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Vipin Kumar Poarson, 1st Edition, 2005

Pearson, 1st Edition, 2005



# Data Mining Cluster Analysis: Basic Concepts and Algorithms

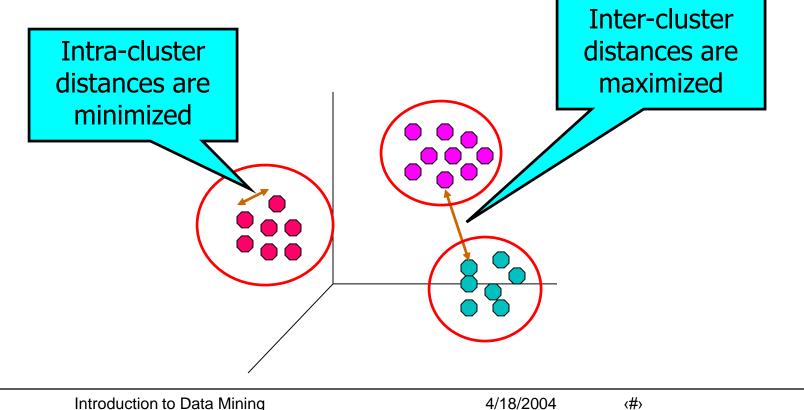
# Lecture Notes for Chapter 8

# Introduction to Data Mining by Tan, Steinbach, Kumar

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | 2 |
|------------------------|-----------------------------|-----------|---|
|                        | 6                           |           |   |

# What is Cluster Analysis?

• Finding groups of objects such that the objects in a group will be similar (or related) to one another and different from (or unrelated to) the objects in other groups



# **Applications of Cluster Analysis**

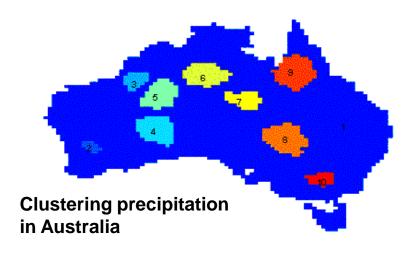
#### • Understanding

 Group related documents for browsing, group genes and proteins that have similar functionality, or group stocks with similar price fluctuations

#### Summarization

Reduce the size of large data sets

|   | Discovered Clusters                                                                                                                                                                                                                                  | Industry Group   |
|---|------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|------------------|
| 1 | Applied-Matl-DOWN,Bay-Network-Down,3-COM-DOWN,<br>Cabletron-Sys-DOWN,CISCO-DOWN,HP-DOWN,<br>DSC-Comm-DOWN,INTEL-DOWN,LSI-Logic-DOWN,<br>Micron-Tech-DOWN,Texas-Inst-Down,Tellabs-Inc-Down,<br>Natl-Semiconduct-DOWN,Oracl-DOWN,SGI-DOWN,<br>Sun-DOWN | Technology1-DOWN |
| 2 | Apple-Comp-DOWN,Autodesk-DOWN,DEC-DOWN,<br>ADV-Micro-Device-DOWN,Andrew-Corp-DOWN,<br>Computer-Assoc-DOWN,Circuit-City-DOWN,<br>Compaq-DOWN, EMC-Corp-DOWN, Gen-Inst-DOWN,<br>Motorola-DOWN,Microsoft-DOWN,Scientific-Atl-DOWN                       | Technology2-DOWN |
| 3 | Fannie-Mae-DOWN,Fed-Home-Loan-DOWN,<br>MBNA-Corp-DOWN,Morgan-Stanley-DOWN                                                                                                                                                                            | Financial-DOWN   |
| 4 | Baker-Hughes-UP,Dresser-Inds-UP,Halliburton-HLD-UP,<br>Louisiana-Land-UP,Phillips-Petro-UP,Unocal-UP,<br>Schlumberger-UP                                                                                                                             | Oil-UP           |



**‹#**>

# What is not Cluster Analysis?

#### Supervised classification

- Have class label information

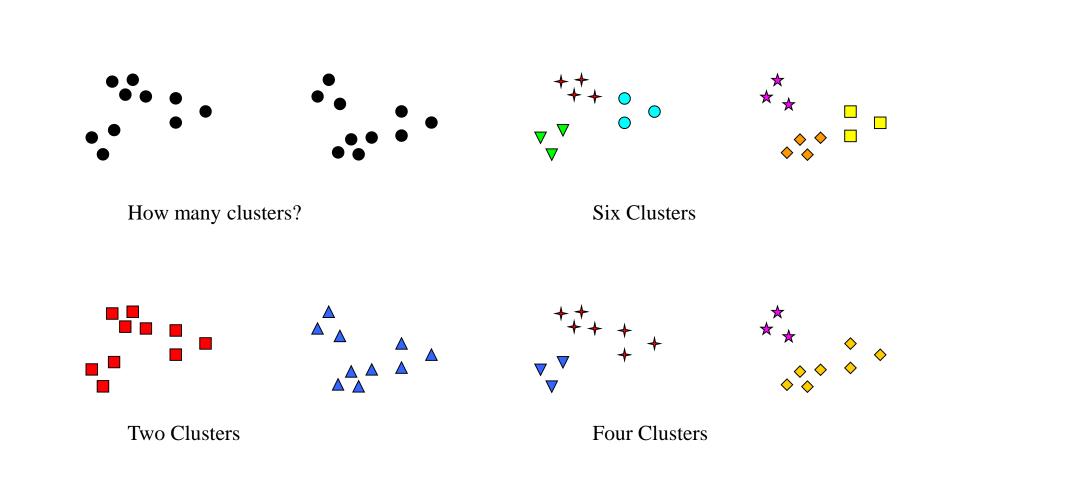
## Simple segmentation

- Dividing students into different registration groups alphabetically, by last name
- Results of a query
  - Groupings are a result of an external specification

# • Graph partitioning

Some mutual relevance and synergy, but areas are not identical

# Notion of a Cluster can be Ambiguous

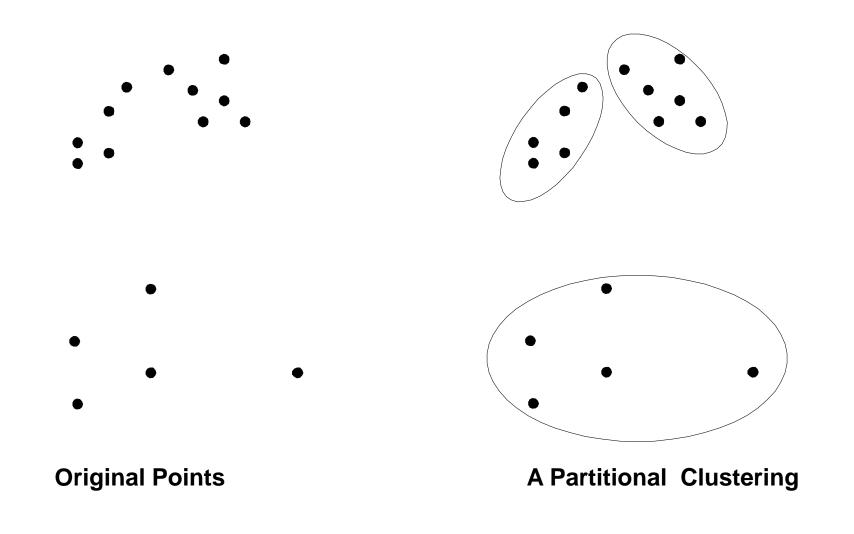


| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 (#) |  |
|------------------------------------------------------------------|--|
|------------------------------------------------------------------|--|

# **Types of Clusterings**

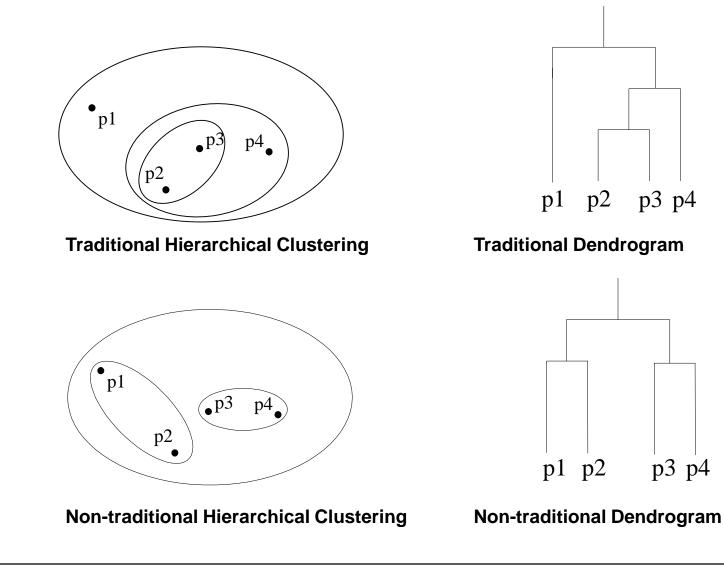
- A clustering is a set of clusters
- Important distinction between hierarchical and partitional sets of clusters
- Partitional Clustering
  - A division data objects into non-overlapping subsets (clusters) such that each data object is in exactly one subset
- Hierarchical clustering
  - A set of nested clusters organized as a hierarchical tree

# **Partitional Clustering**



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 <#> |  |
|------------------------|-----------------------------|---------------|--|
|------------------------|-----------------------------|---------------|--|

# **Hierarchical Clustering**



Introduction to Data Mining

4/18/2004

# **Other Distinctions Between Sets of Clusters**

#### • Exclusive versus non-exclusive

- In non-exclusive clusterings, points may belong to multiple clusters.
- Can represent multiple classes or 'border' points
- Fuzzy versus non-fuzzy
  - In fuzzy clustering, a point belongs to every cluster with some weight between 0 and 1
  - Weights must sum to 1
  - Probabilistic clustering has similar characteristics
- Partial versus complete
  - In some cases, we only want to cluster some of the data
- Heterogeneous versus homogeneous
  - Cluster of widely different sizes, shapes, and densities

# **Types of Clusters**

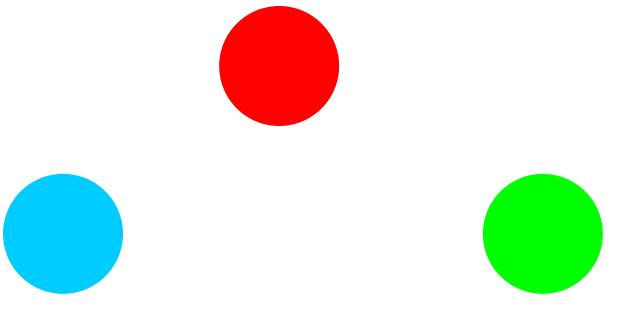
- Well-separated clusters
- Center-based clusters
- Contiguous clusters
- Density-based clusters
- Property or Conceptual
- Described by an Objective Function

**‹#**>

# **Types of Clusters: Well-Separated**

#### • Well-Separated Clusters:

 A cluster is a set of points such that any point in a cluster is closer (or more similar) to every other point in the cluster than to any point not in the cluster.



#### **3 well-separated clusters**

| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

## **Types of Clusters: Center-Based**

#### Center-based

- A cluster is a set of objects such that an object in a cluster is closer (more similar) to the "center" of a cluster, than to the center of any other cluster
- The center of a cluster is often a centroid, the average of all the points in the cluster, or a medoid, the most "representative" point of a cluster



#### 4 center-based clusters

| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› |  |
|------------------------------------------------------------------|--|
|------------------------------------------------------------------|--|

# **Types of Clusters: Contiguity-Based**

- Contiguous Cluster (Nearest neighbor or Transitive)
  - A cluster is a set of points such that a point in a cluster is closer (or more similar) to one or more other points in the cluster than to any point not in the cluster.



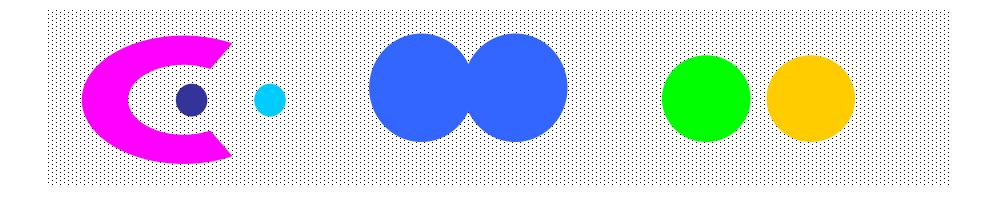
8 contiguous clusters

| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 (#) |
|------------------------------------------------------------------|
|------------------------------------------------------------------|

## **Types of Clusters: Density-Based**

## Density-based

- A cluster is a dense region of points, which is separated by low-density regions, from other regions of high density.
- Used when the clusters are irregular or intertwined, and when noise and outliers are present.

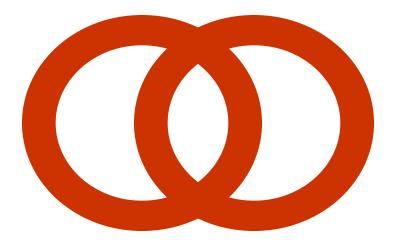


#### 6 density-based clusters

|  | © Tan,Steinb | ach, Kumar | Introduction to Data Mining | 4/18/2004 | <#> |
|--|--------------|------------|-----------------------------|-----------|-----|
|--|--------------|------------|-----------------------------|-----------|-----|

# **Types of Clusters: Conceptual Clusters**

- Shared Property or Conceptual Clusters
  - Finds clusters that share some common property or represent a particular concept.



#### **2 Overlapping Circles**

| ) Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|

# **Types of Clusters: Objective Function**

- Clusters Defined by an Objective Function
  - Finds clusters that minimize or maximize an objective function.
  - Enumerate all possible ways of dividing the points into clusters and evaluate the `goodness' of each potential set of clusters by using the given objective function. (NP Hard)
  - Can have global or local objectives.
    - Hierarchical clustering algorithms typically have local objectives
    - Partitional algorithms typically have global objectives

# **Clustering Algorithms**

- K-means and its variants
- Hierarchical clustering
- Density-based clustering

# **K-means Clustering**

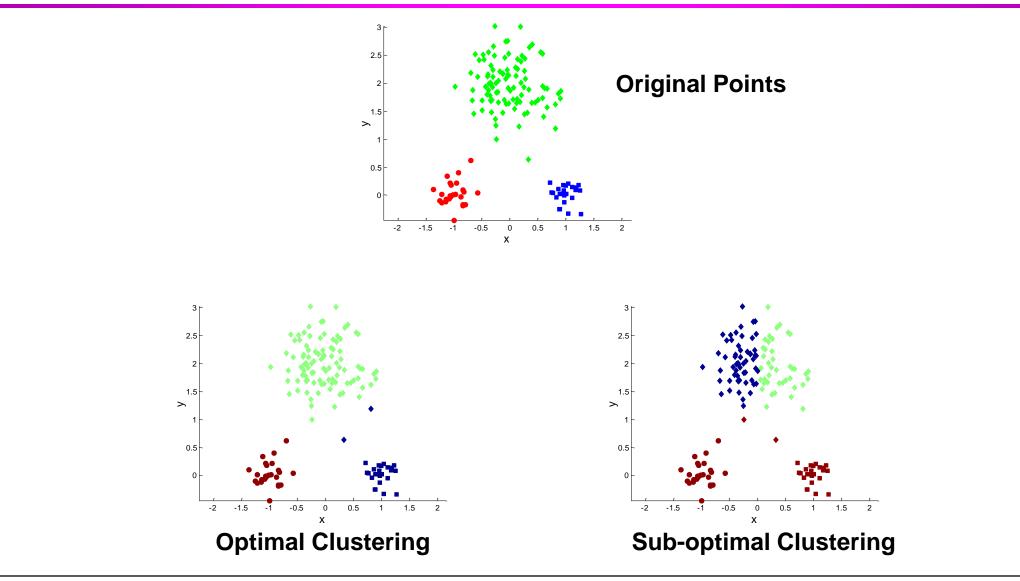
- Partitional clustering approach
- Each cluster is associated with a centroid (center point)
- Each point is assigned to the cluster with the closest centroid
- Number of clusters, K, must be specified
- The basic algorithm is very simple

- 1: Select K points as the initial centroids.
- 2: repeat
- 3: Form K clusters by assigning all points to the closest centroid.
- 4: Recompute the centroid of each cluster.
- 5: **until** The centroids don't change

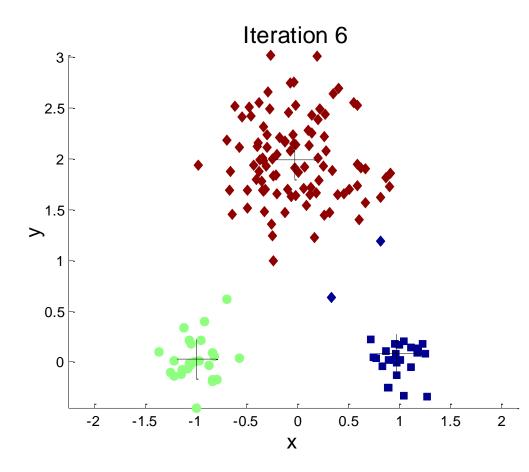
# **K-means Clustering – Details**

- Initial centroids are often chosen randomly.
  - Clusters produced vary from one run to another.
- The centroid is (typically) the mean of the points in the cluster.
- 'Closeness' is measured by Euclidean distance, cosine similarity, correlation, etc.
- K-means will converge for common similarity measures mentioned above.
- Most of the convergence happens in the first few iterations.
  - Often the stopping condition is changed to 'Until relatively few points change clusters'
- Complexity is O( n \* K \* I \* d )
  - n = number of points, K = number of clusters,
    - I = number of iterations, d = number of attributes

## **Two different K-means Clusterings**

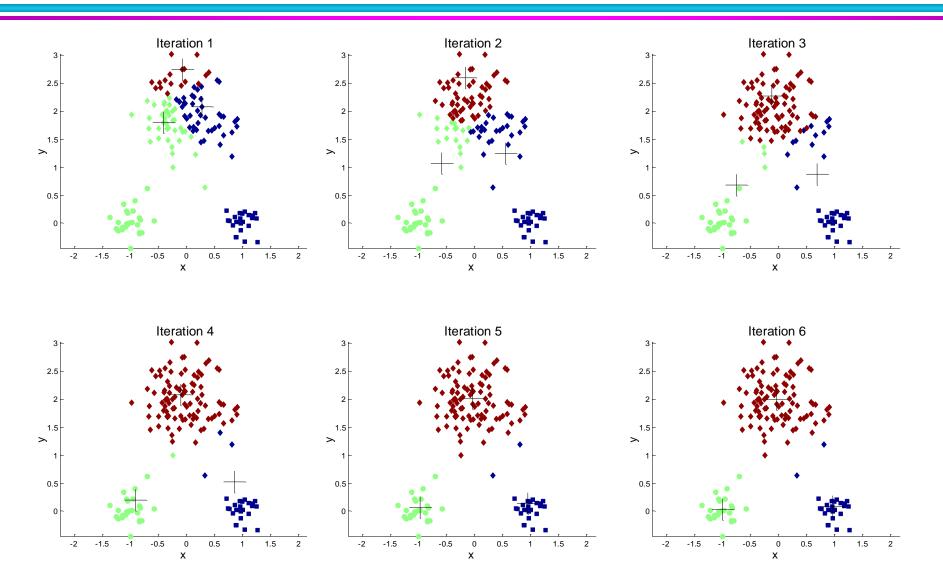


### **Importance of Choosing Initial Centroids**



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|

## **Importance of Choosing Initial Centroids**



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <# <b>&gt;</b> |
|------------------------|-----------------------------|-----------|----------------|
|------------------------|-----------------------------|-----------|----------------|

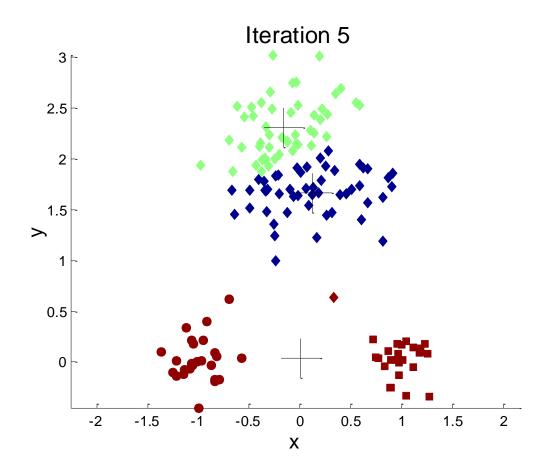
# **Evaluating K-means Clusters**

- Most common measure is Sum of Squared Error (SSE)
  - For each point, the error is the distance to the nearest cluster
  - To get SSE, we square these errors and sum them.

$$SSE = \sum_{i=1}^{K} \sum_{x \in C_i} dist^2(m_i, x)$$

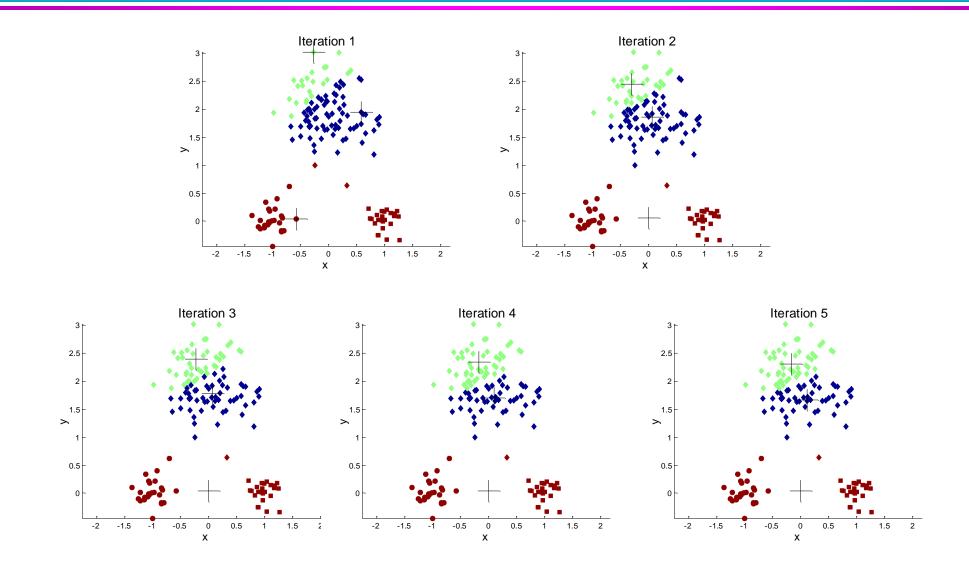
- x is a data point in cluster  $C_i$  and  $m_i$  is the representative point for cluster  $C_i$ 
  - can show that  $m_i$  corresponds to the center (mean) of the cluster
- Given two clusters, we can choose the one with the smallest error
- One easy way to reduce SSE is to increase K, the number of clusters
  - A good clustering with smaller K can have a lower SSE than a poor clustering with higher K

### **Importance of Choosing Initial Centroids ...**



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 (#> |  |
|------------------------|-----------------------------|---------------|--|
|------------------------|-----------------------------|---------------|--|

### **Importance of Choosing Initial Centroids ...**



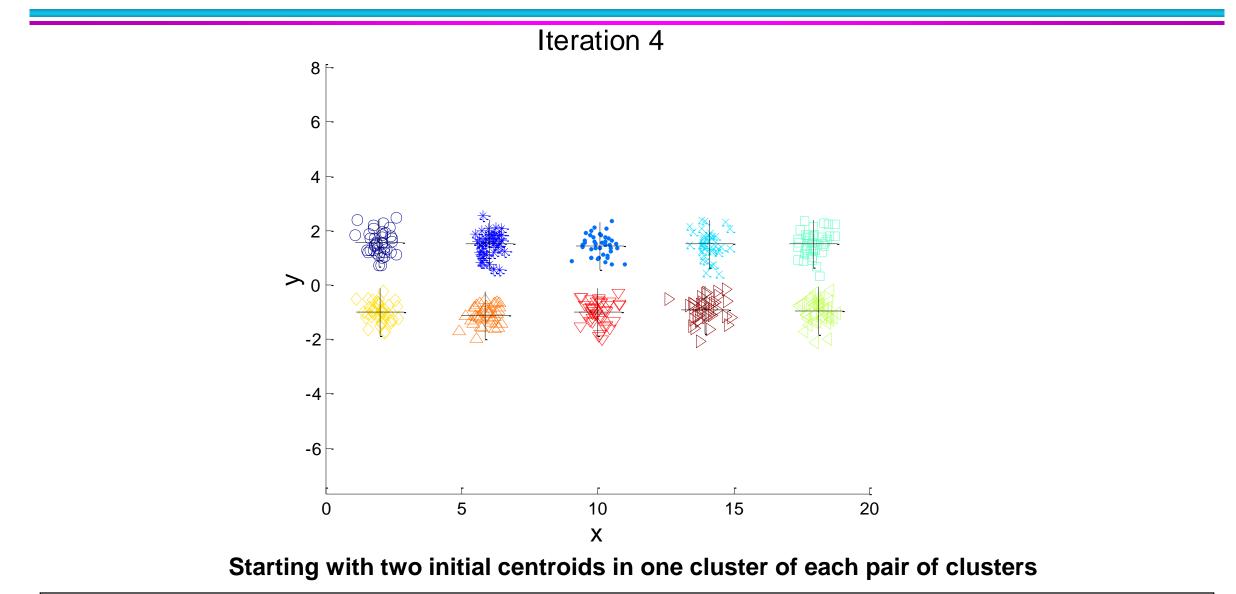
| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 (#> |  |
|------------------------|-----------------------------|---------------|--|
|------------------------|-----------------------------|---------------|--|

# **Problems with Selecting Initial Points**

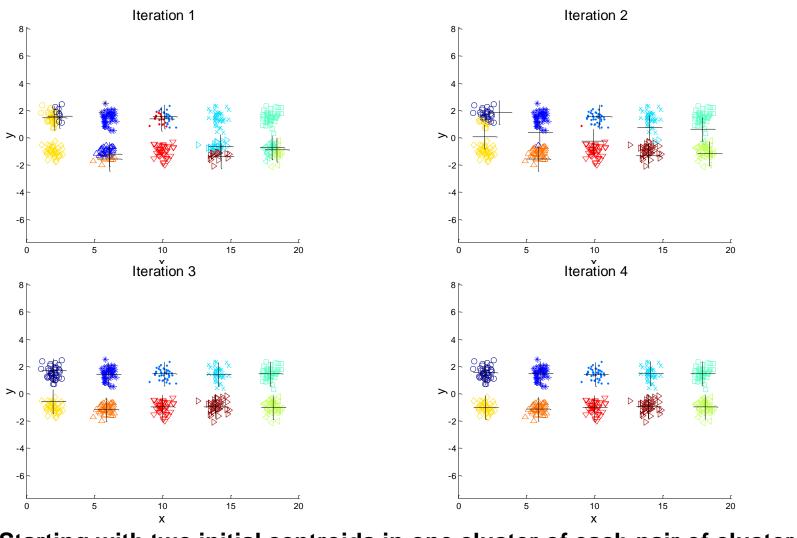
- If there are K 'real' clusters then the chance of selecting one centroid from each cluster is small.
  - Chance is relatively small when K is large
  - If clusters are the same size, n, then

$$P = \frac{\text{number of ways to select one centroid from each cluster}}{\text{number of ways to select } K \text{ centroids}} = \frac{K! n^K}{(Kn)^K} = \frac{K!}{K^K}$$

- For example, if K = 10, then probability =  $10!/10^{10} = 0.00036$
- Sometimes the initial centroids will readjust themselves in 'right' way, and sometimes they don't
- Consider an example of five pairs of clusters

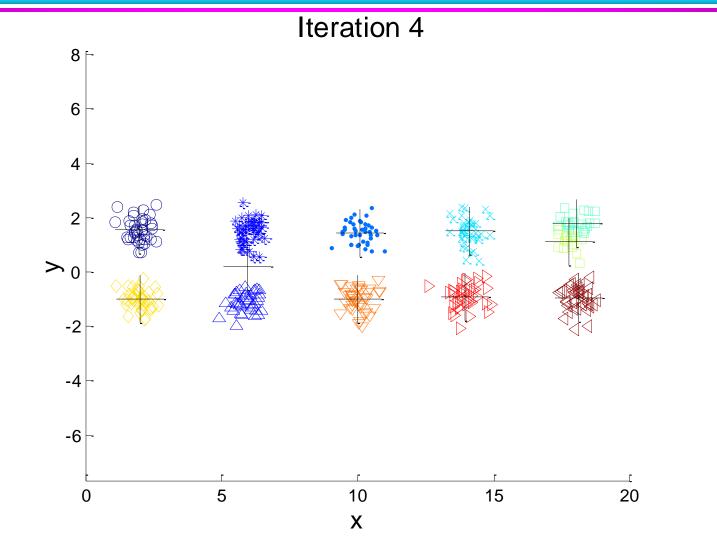


| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|



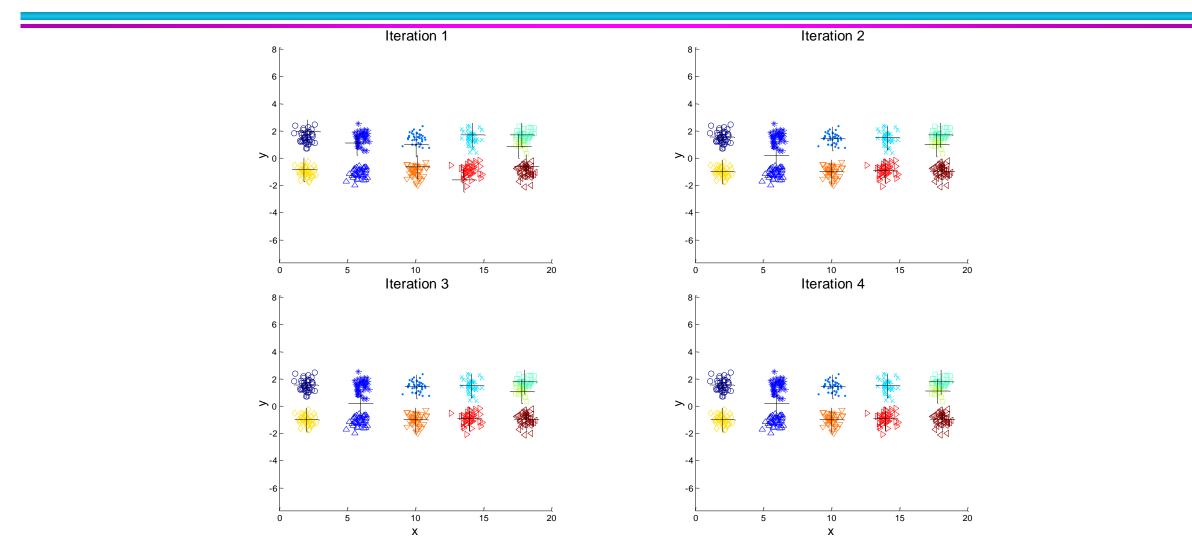
Starting with two initial centroids in one cluster of each pair of clusters

| © Tan, Steinbach, Kumar Introduction to Data Mining | 4/18/2004 (#> |
|-----------------------------------------------------|---------------|
|-----------------------------------------------------|---------------|



Starting with some pairs of clusters having three initial centroids, while other have only one.

| © Tan,Steinbach, Kumar Introduction to Data Mining | 4/18/2004 (#> |  |
|----------------------------------------------------|---------------|--|
|----------------------------------------------------|---------------|--|



Starting with some pairs of clusters having three initial centroids, while other have only one.

| © Tan,Steinbach, Kumar Introduction to Data Mining | 4/18/2004 <#> |
|----------------------------------------------------|---------------|
|----------------------------------------------------|---------------|

# **Solutions to Initial Centroids Problem**

- Multiple runs
  - Helps, but probability is not on your side
- Sample and use hierarchical clustering to determine initial centroids
- Select more than k initial centroids and then select among these initial centroids
  - Select most widely separated
- Postprocessing
- Bisecting K-means
  - Not as susceptible to initialization issues

**(#**)

# **Updating Centers Incrementally**

- In the basic K-means algorithm, centroids are updated after all points are assigned to a centroid
- An alternative is to update the centroids after each assignment (incremental approach)
  - Each assignment updates zero or two centroids
  - More expensive
  - Introduces an order dependency
  - Never get an empty cluster
  - Can use "weights" to change the impact

# **Pre-processing and Post-processing**

- Pre-processing
  - Normalize the data
  - Eliminate outliers
- Post-processing
  - Eliminate small clusters that may represent outliers
  - Split 'loose' clusters, i.e., clusters with relatively high SSE
  - Merge clusters that are 'close' and that have relatively low SSE

**(#**)

# **Bisecting K-means**

# • Bisecting K-means algorithm

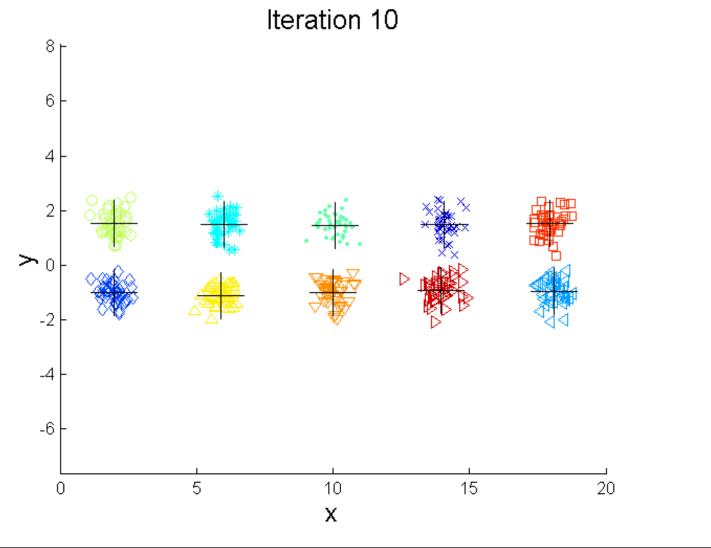
 Variant of K-means that can produce a partitional or a hierarchical clustering

1: Initialize the list of clusters to contain the cluster containing all points.

2: repeat

- 3: Select a cluster from the list of clusters
- 4: for i = 1 to number\_of\_iterations do
- 5: Bisect the selected cluster using basic K-means
- 6: end for
- 7: Add the two clusters from the bisection with the lowest SSE to the list of clusters.
- 8: until Until the list of clusters contains K clusters

## **Bisecting K-means Example**

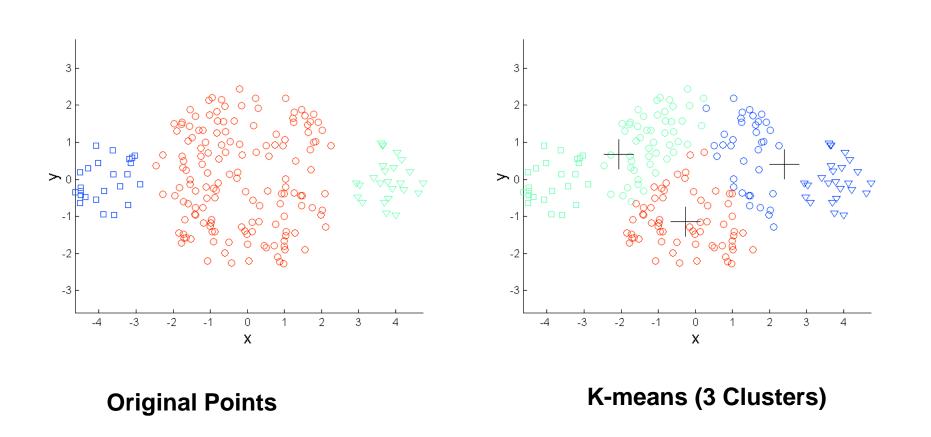


| © Tan, Steinbach, Kumar Introduction to Data Mining | 4/18/2004 (#) |  |
|-----------------------------------------------------|---------------|--|
|-----------------------------------------------------|---------------|--|

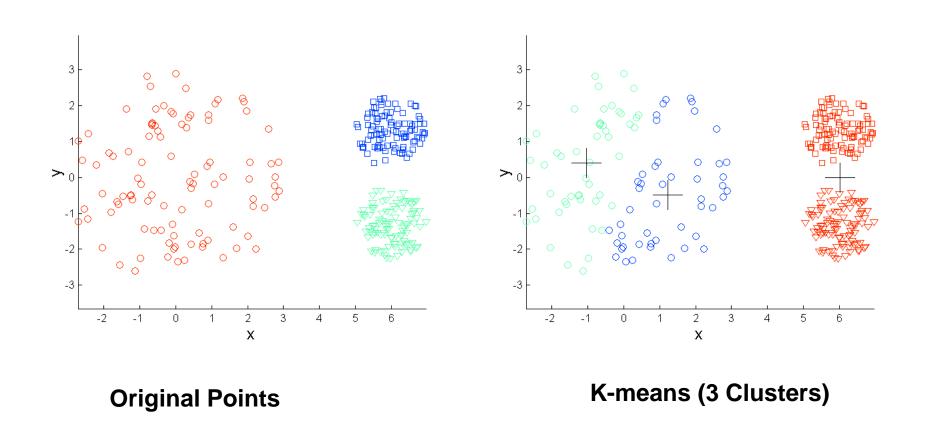
# **Limitations of K-means**

- K-means has problems when clusters are of differing
  - Sizes
  - Densities
  - Non-globular shapes
- K-means has problems when the data contains outliers.

## **Limitations of K-means: Differing Sizes**



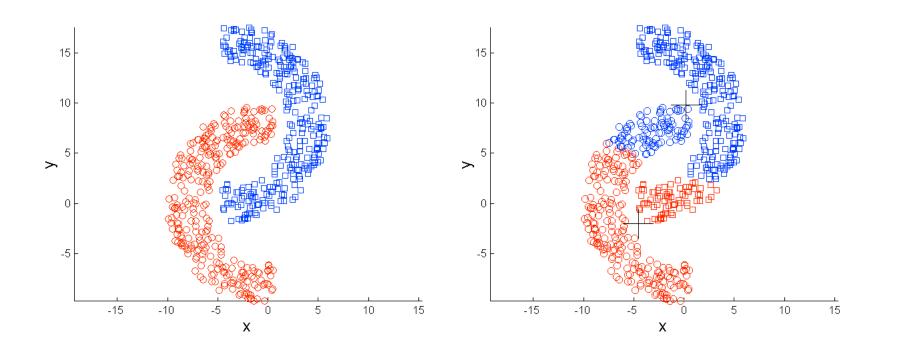
## **Limitations of K-means: Differing Density**



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |
|------------------------|-----------------------------|-----------|
|------------------------|-----------------------------|-----------|

**<#**>

### **Limitations of K-means: Non-globular Shapes**

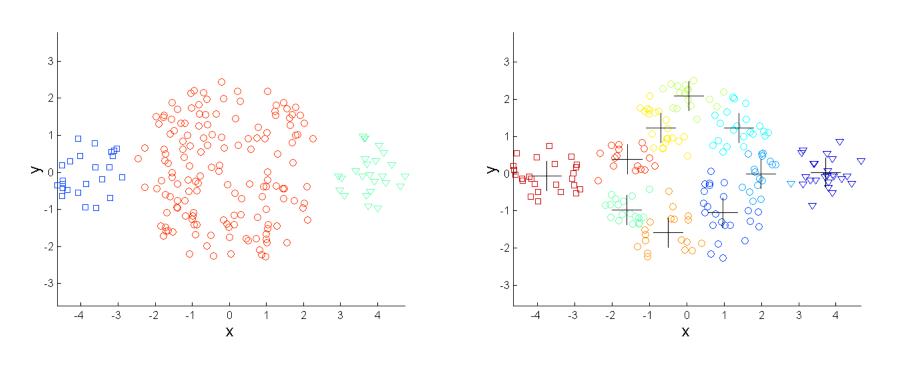


**Original Points** 

K-means (2 Clusters)

| C | Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <#> |
|---|----------------------|-----------------------------|-----------|-----|
|---|----------------------|-----------------------------|-----------|-----|

## **Overcoming K-means Limitations**



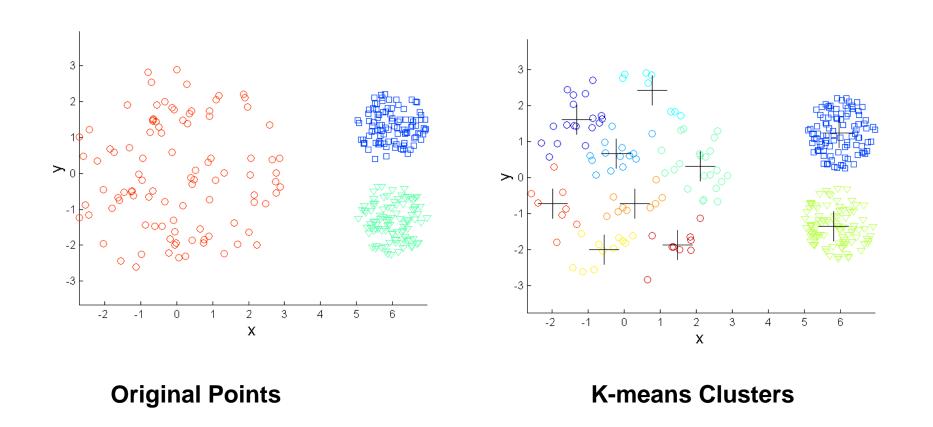
#### **Original Points**

**K-means Clusters** 

One solution is to use many clusters. Find parts of clusters, but need to put together.

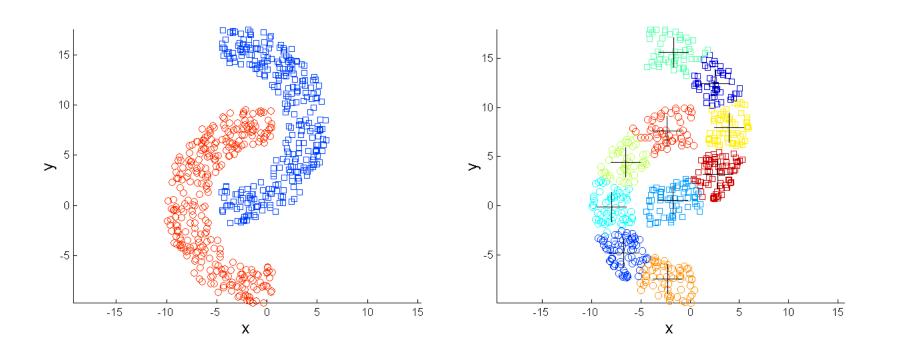
| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 (#> |  |
|------------------------|-----------------------------|---------------|--|
|------------------------|-----------------------------|---------------|--|

## **Overcoming K-means Limitations**



| ٦© | an,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <#> |
|----|---------------------|-----------------------------|-----------|-----|
|----|---------------------|-----------------------------|-----------|-----|

## **Overcoming K-means Limitations**



**Original Points** 

**K-means Clusters** 

| © Tan,Steinbach, Kumar Introduction to Data Mining 4/18/2004 ‹#› |
|------------------------------------------------------------------|
|------------------------------------------------------------------|