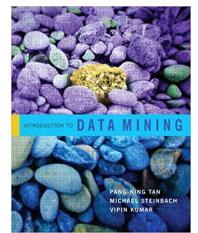
COM/BLM 453 Data Mining Asst. Prof. Dr. Bulent TUGRUL btugrul@eng.ankara.edu.tr

Slides are mainly based on: Introduction to Data Mining by Pang-Ning Tan, Michael Steinbach, Vipin Kumar

Pearson, 1st Edition, 2005



## Data Mining Cluster Analysis: Basic Concepts and Algorithms

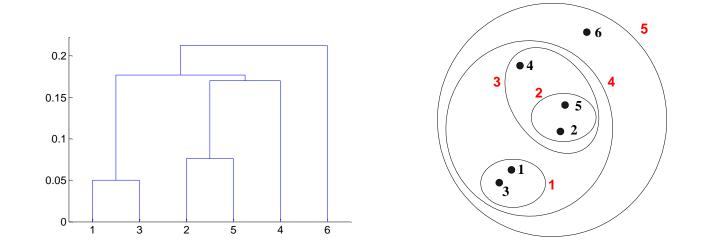
## Lecture Notes for Chapter 8

# Introduction to Data Mining by Tan, Steinbach, Kumar

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | 2 |
|------------------------|-----------------------------|-----------|---|
|                        | 6                           |           |   |

## **Hierarchical Clustering**

- Produces a set of nested clusters organized as a hierarchical tree
- Can be visualized as a dendrogram
  - A tree like diagram that records the sequences of merges or splits



**‹#**>

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |
|------------------------|-----------------------------|-----------|
|------------------------|-----------------------------|-----------|

# **Strengths of Hierarchical Clustering**

- Do not have to assume any particular number of clusters
  - Any desired number of clusters can be obtained by 'cutting' the dendogram at the proper level
- They may correspond to meaningful taxonomies
  - Example in biological sciences (e.g., animal kingdom, phylogeny reconstruction, ...)

# **Hierarchical Clustering**

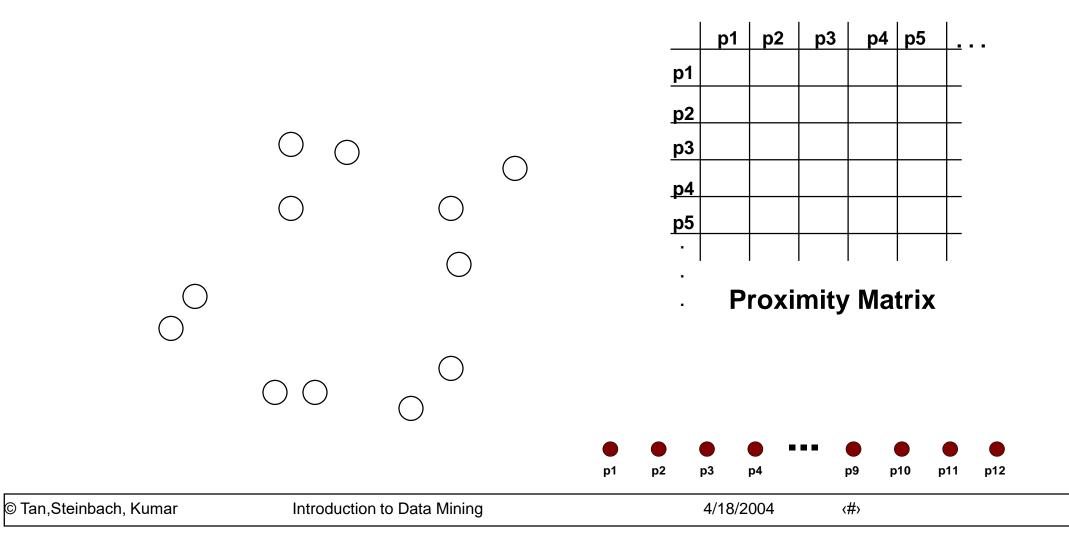
- Two main types of hierarchical clustering
  - Agglomerative:
    - Start with the points as individual clusters
    - ◆ At each step, merge the closest pair of clusters until only one cluster (or k clusters) left
  - Divisive:
    - Start with one, all-inclusive cluster
    - At each step, split a cluster until each cluster contains a point (or there are k clusters)
- Traditional hierarchical algorithms use a similarity or distance matrix
  - Merge or split one cluster at a time

# **Agglomerative Clustering Algorithm**

- More popular hierarchical clustering technique
- Basic algorithm is straightforward
  - 1. Compute the proximity matrix
  - 2. Let each data point be a cluster
  - 3. Repeat
  - 4. Merge the two closest clusters
  - 5. Update the proximity matrix
  - 6. Until only a single cluster remains
- Key operation is the computation of the proximity of two clusters
  - Different approaches to defining the distance between clusters distinguish the different algorithms

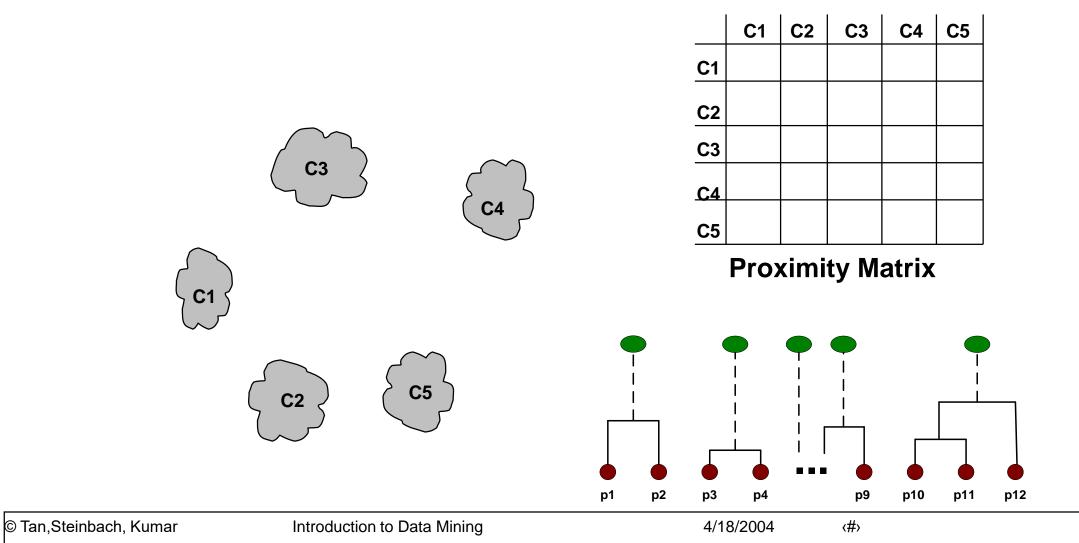
## **Starting Situation**

• Start with clusters of individual points and a proximity matrix



## **Intermediate Situation**

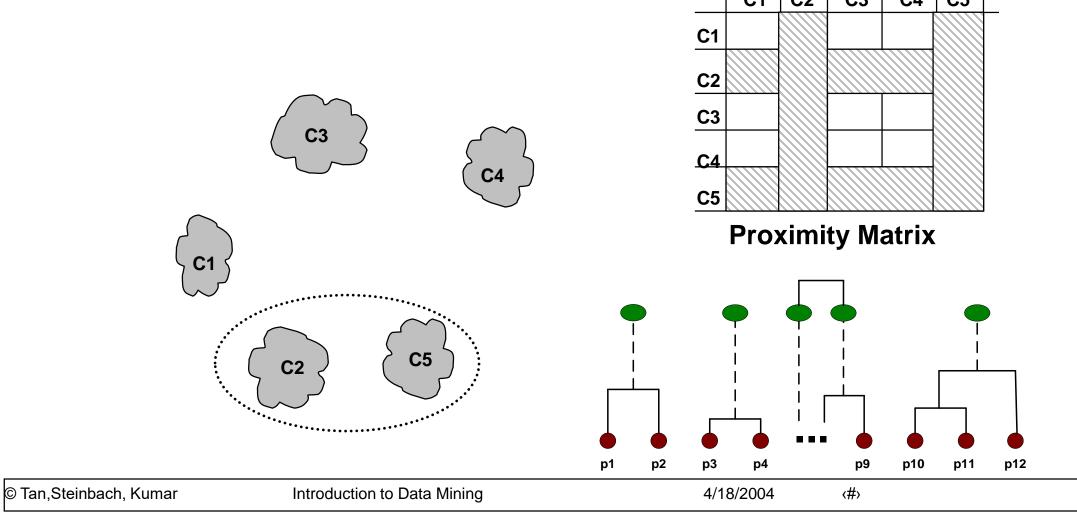
• After some merging steps, we have some clusters



## **Intermediate Situation**

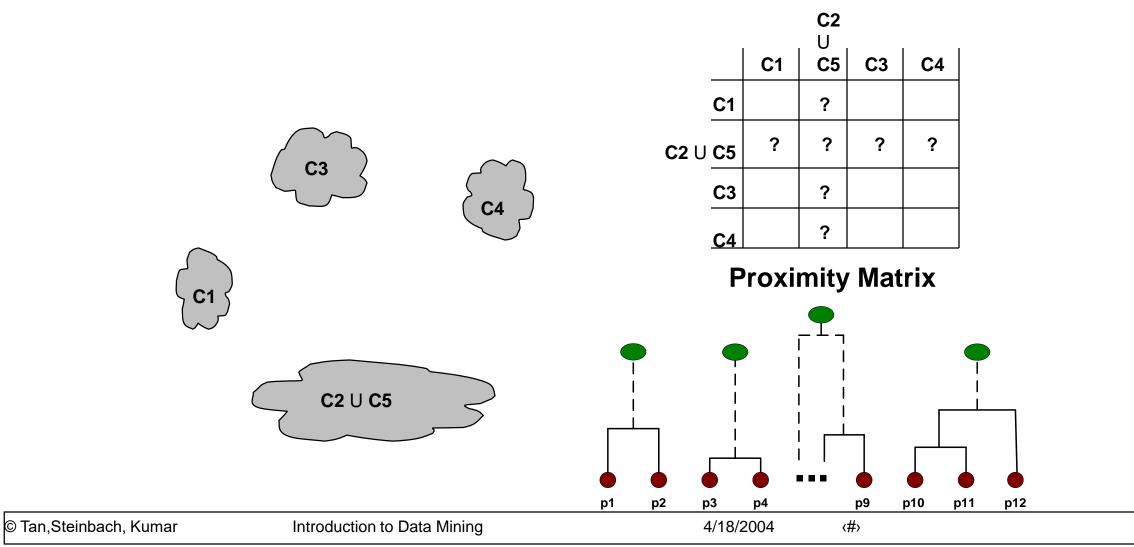
We want to merge the two closest clusters (C2 and C5) and update the proximity matrix.

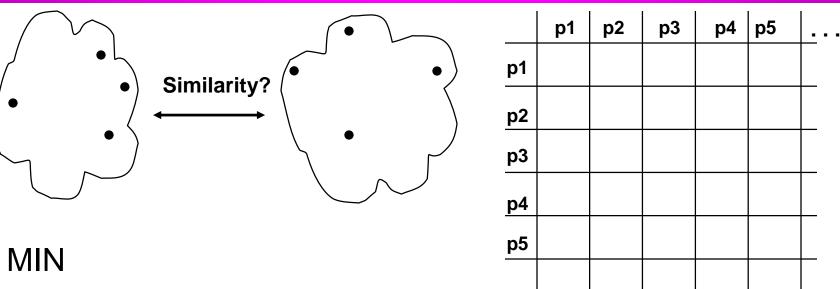
 C1 | c2 | c3 | c4 | c5 |



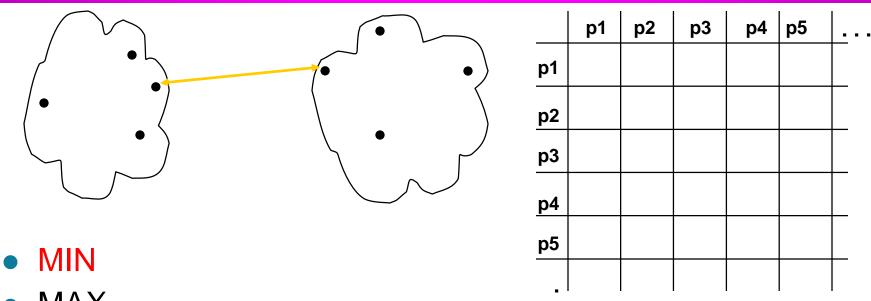
# **After Merging**

• The question is "How do we update the proximity matrix?"

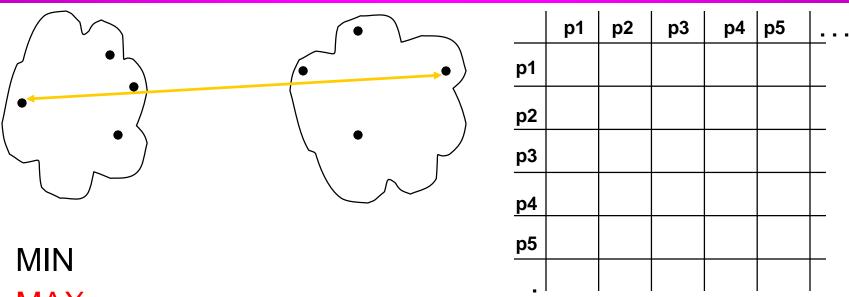




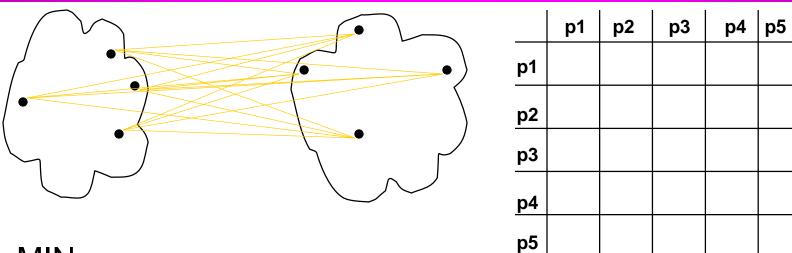
- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



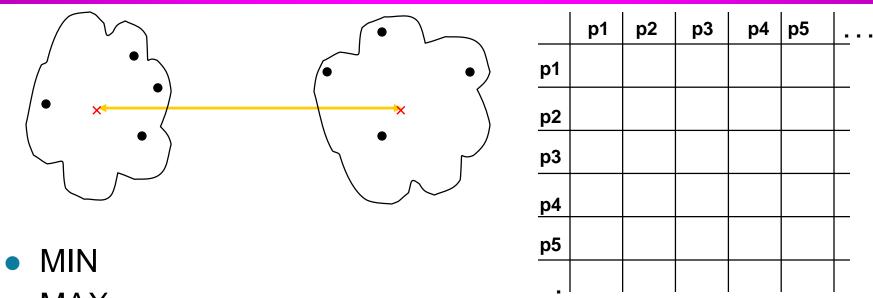
- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error



- MIN
- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

#### **Proximity Matrix**

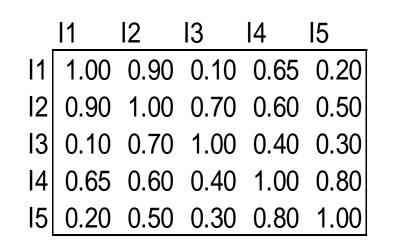
. . .

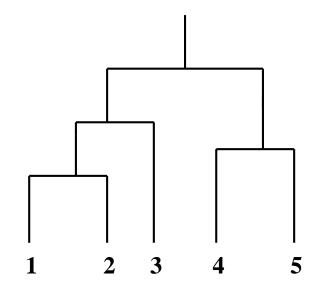


- MAX
- Group Average
- Distance Between Centroids
- Other methods driven by an objective function
  - Ward's Method uses squared error

# **Cluster Similarity: MIN or Single Link**

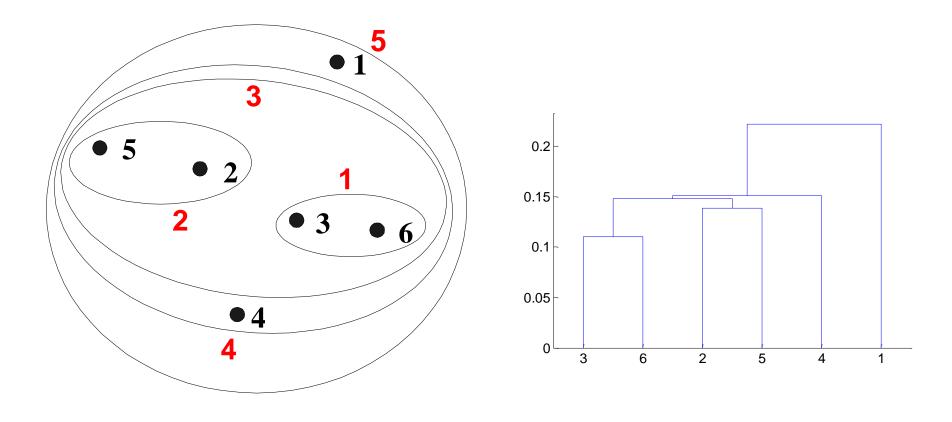
- Similarity of two clusters is based on the two most similar (closest) points in the different clusters
  - Determined by one pair of points, i.e., by one link in the proximity graph.





**‹#**>

## **Hierarchical Clustering: MIN**

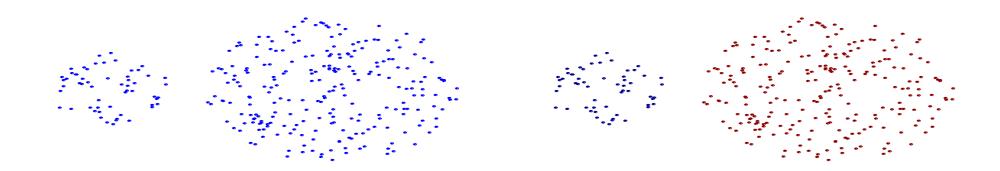


**Nested Clusters** 



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|

## **Strength of MIN**



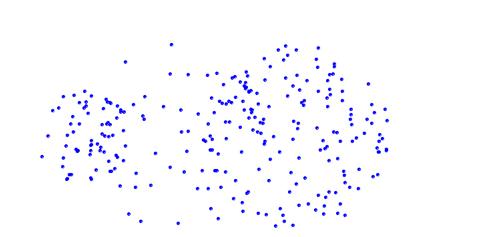
**Original Points** 

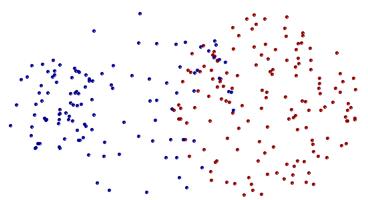
**Two Clusters** 

Can handle non-elliptical shapes

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |
|------------------------|-----------------------------|-----------|--|
|------------------------|-----------------------------|-----------|--|

## **Limitations of MIN**





**Original Points** 

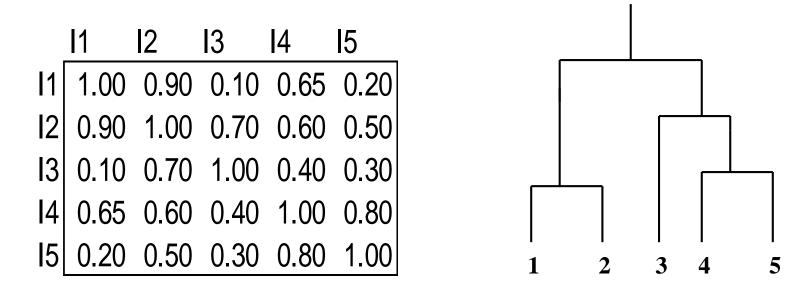
**Two Clusters** 

#### Sensitive to noise and outliers

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 <#> |  |
|------------------------|-----------------------------|---------------|--|
|------------------------|-----------------------------|---------------|--|

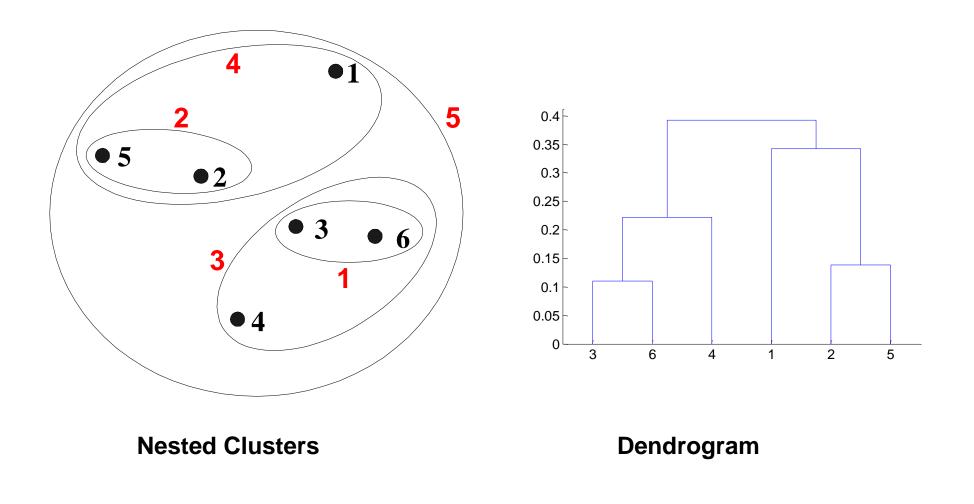
## **Cluster Similarity: MAX or Complete Linkage**

- Similarity of two clusters is based on the two least similar (most distant) points in the different clusters
  - Determined by all pairs of points in the two clusters

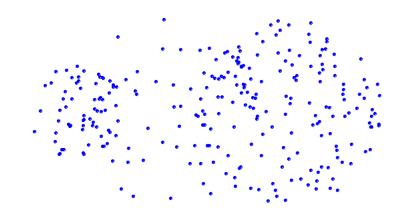


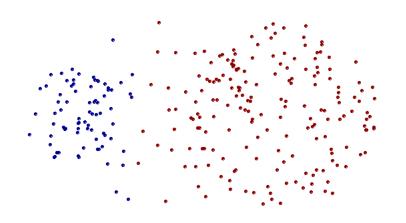
| © Tan,Stei | nbach, Kumar |
|------------|--------------|
|------------|--------------|

## **Hierarchical Clustering: MAX**



## **Strength of MAX**





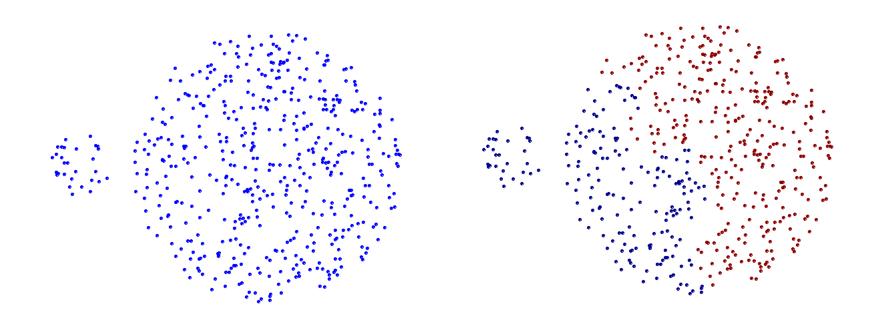
**Original Points** 

**Two Clusters** 

• Less susceptible to noise and outliers

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |
|------------------------|-----------------------------|-----------|----------------|--|
|------------------------|-----------------------------|-----------|----------------|--|

## **Limitations of MAX**



**Original Points** 

**Two Clusters** 

- •Tends to break large clusters
- •Biased towards globular clusters

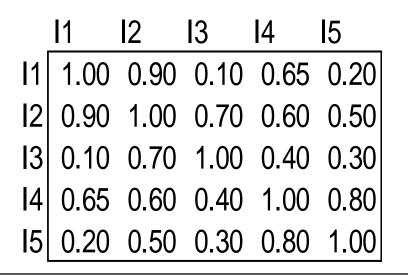
| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |
|------------------------|-----------------------------|-----------|--|
|------------------------|-----------------------------|-----------|--|

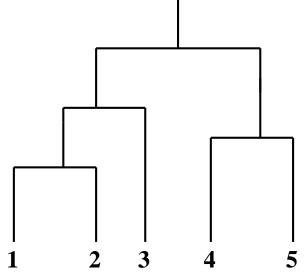
## **Cluster Similarity: Group Average**

• Proximity of two clusters is the average of pairwise proximity between points in the two clusters.

$$proximity(Cluster_{i}, Cluster_{j}) = \frac{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}}{\sum_{\substack{p_{i} \in Cluster_{i} \\ p_{j} \in Cluster_{j}}} | \cdot | Cluster_{i} | \cdot | Cluster_{i} |$$

 Need to use average connectivity for scalability since total proximity favors large clusters





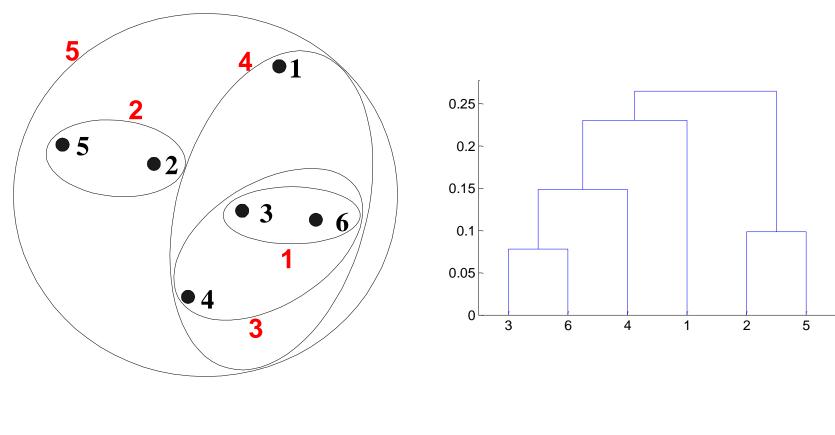
© Tan,Steinbach, Kumar

Introduction to Data Mining

4/18/2004

**‹#**>

## **Hierarchical Clustering: Group Average**



**Nested Clusters** 

Dendrogram

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|

# **Hierarchical Clustering: Group Average**

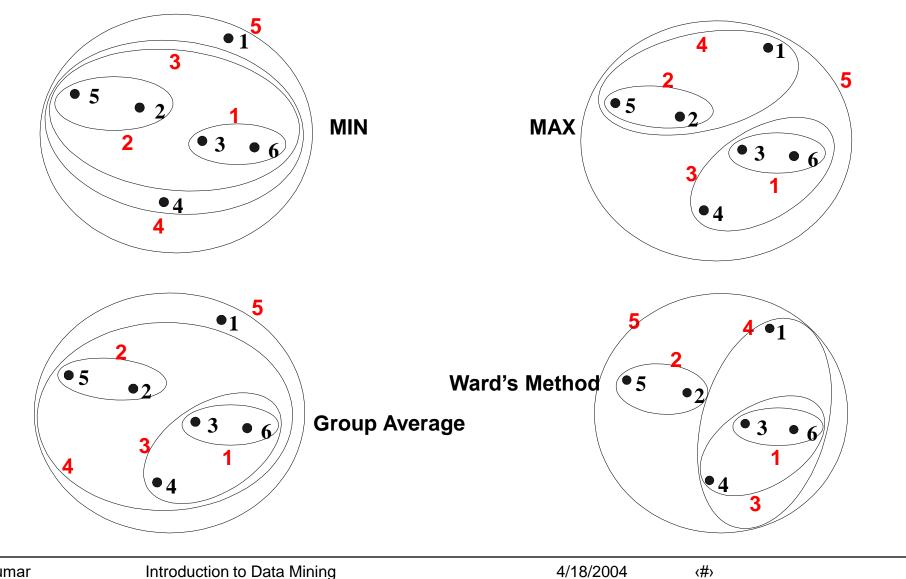
- Compromise between Single and Complete Link
- Strengths
  - Less susceptible to noise and outliers

- Limitations
  - Biased towards globular clusters

# **Cluster Similarity: Ward's Method**

- Similarity of two clusters is based on the increase in squared error when two clusters are merged
  - Similar to group average if distance between points is distance squared
- Less susceptible to noise and outliers
- Biased towards globular clusters
- Hierarchical analogue of K-means
  - Can be used to initialize K-means

#### **Hierarchical Clustering: Comparison**



- $O(N^2)$  space since it uses the proximity matrix.
  - N is the number of points.
- O(N<sup>3</sup>) time in many cases
  - There are N steps and at each step the size, N<sup>2</sup>, proximity matrix must be updated and searched
  - Complexity can be reduced to  $O(N^2 \log(N))$  time for some approaches

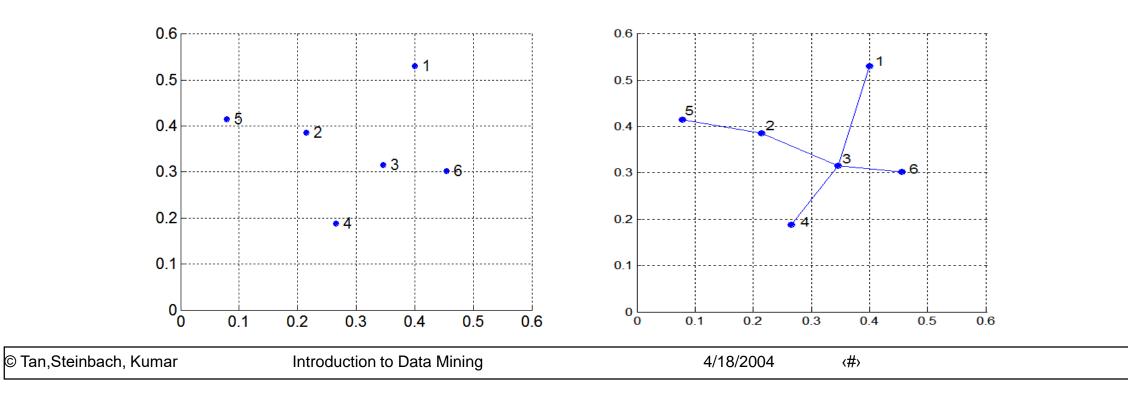
#### **Hierarchical Clustering: Problems and Limitations**

- Once a decision is made to combine two clusters, it cannot be undone
- No objective function is directly minimized
- Different schemes have problems with one or more of the following:
  - Sensitivity to noise and outliers
  - Difficulty handling different sized clusters and convex shapes
  - Breaking large clusters

# **MST: Divisive Hierarchical Clustering**

## • Build MST (Minimum Spanning Tree)

- Start with a tree that consists of any point
- In successive steps, look for the closest pair of points (p, q) such that one point (p) is in the current tree but the other (q) is not
- Add q to the tree and put an edge between p and q



# **MST: Divisive Hierarchical Clustering**

#### • Use MST for constructing hierarchy of clusters

#### Algorithm 7.5 MST Divisive Hierarchical Clustering Algorithm

1: Compute a minimum spanning tree for the proximity graph.

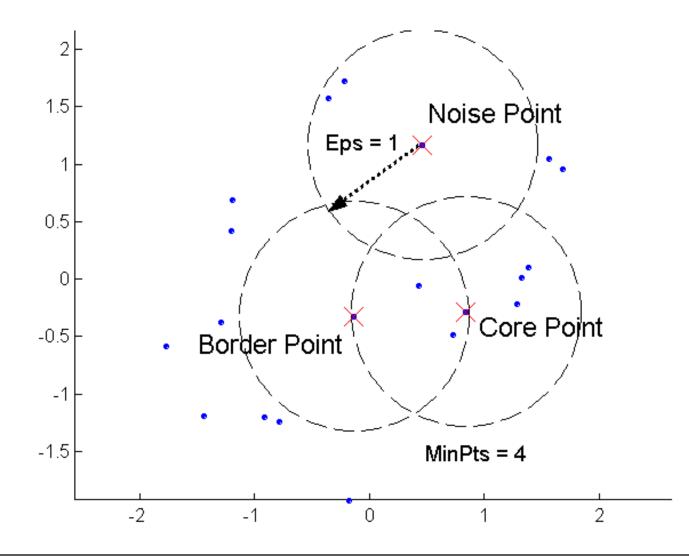
2: repeat

- 3: Create a new cluster by breaking the link corresponding to the largest distance (smallest similarity).
- 4: until Only singleton clusters remain

#### DBSCAN

- DBSCAN is a density-based algorithm.
  - Density = number of points within a specified radius (Eps)
  - A point is a core point if it has more than a specified number of points (MinPts) within Eps
    - These are points that are at the interior of a cluster
  - A border point has fewer than MinPts within Eps, but is in the neighborhood of a core point
  - A noise point is any point that is not a core point or a border point.

#### **DBSCAN:** Core, Border, and Noise Points



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |  |  |
|------------------------|-----------------------------|-----------|----------------|--|--|--|
|------------------------|-----------------------------|-----------|----------------|--|--|--|

# **DBSCAN Algorithm**

#### Eliminate noise points

## Perform clustering on the remaining points

 $current\_cluster\_label \leftarrow 1$ 

for all core points  $\mathbf{do}$ 

 ${\bf if}$  the core point has no cluster label  ${\bf then}$ 

 $current\_cluster\_label \gets current\_cluster\_label + 1$ 

Label the current core point with cluster label current\_cluster\_label

#### end if

for all points in the Eps-neighborhood, except  $i^{th}$  the point itself do if the point does not have a cluster label then

Label the point with cluster label *current\_cluster\_label* 

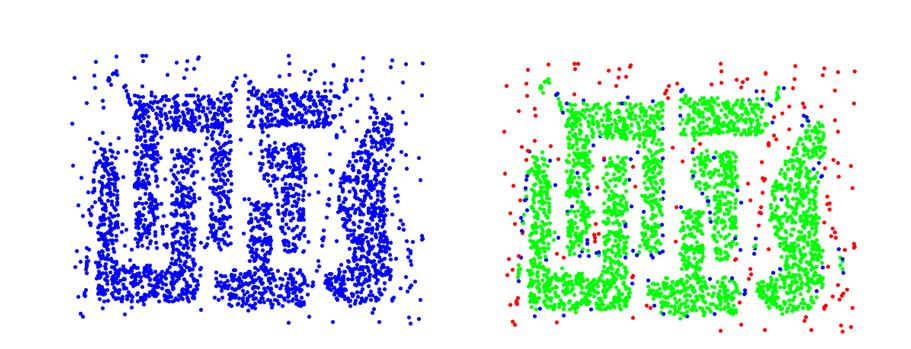
end if

end for

end for

| © Tan,Steinbach, Kumar |  |
|------------------------|--|
|------------------------|--|

#### **DBSCAN: Core, Border and Noise Points**



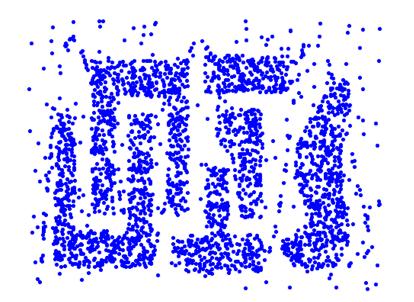
**Original Points** 

Point types: core, border and noise

**Eps = 10, MinPts = 4** 

|--|

#### When DBSCAN Works Well



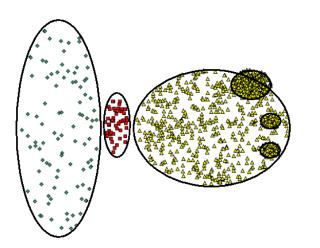
**Original Points** 

Clusters

- Resistant to Noise
- Can handle clusters of different shapes and sizes

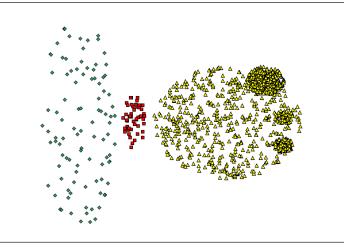
| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |
|------------------------|-----------------------------|-----------|--|
|------------------------|-----------------------------|-----------|--|

#### When DBSCAN Does NOT Work Well

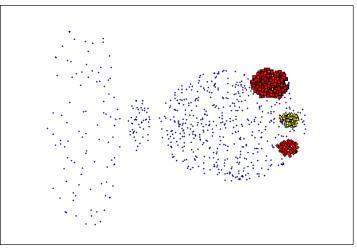


**Original Points** 

- Varying densities
- High-dimensional data



(MinPts=4, Eps=9.75).



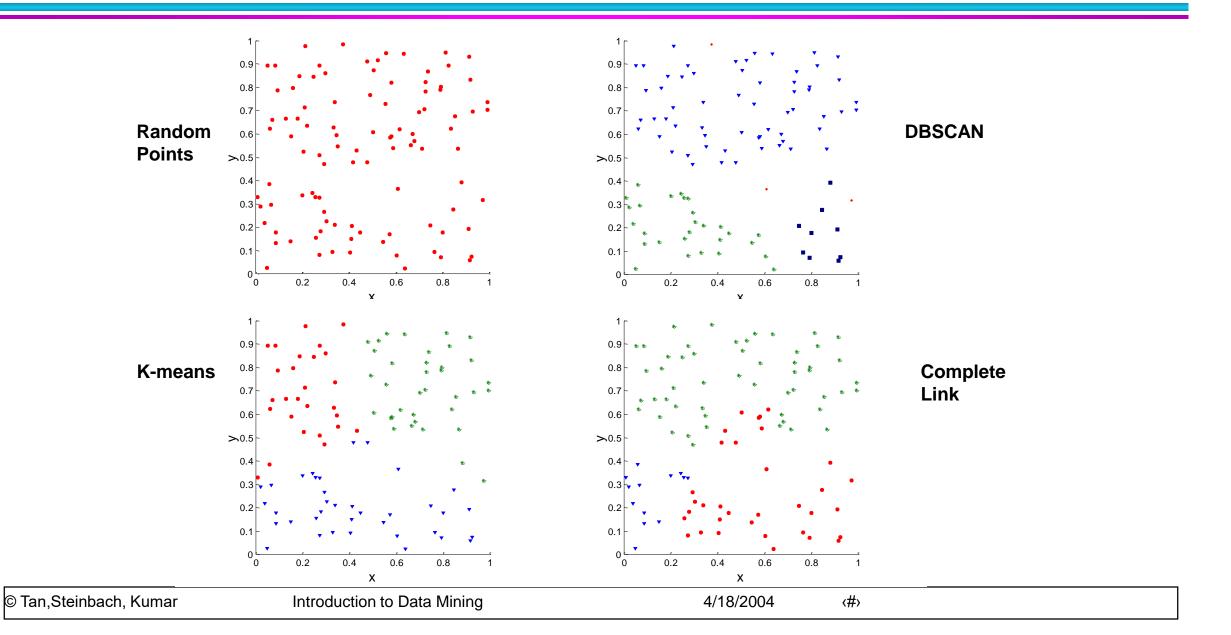
(MinPts=4, Eps=9.92)

| © Tan,Steinbach, I | Kumar |
|--------------------|-------|
|--------------------|-------|

# **Cluster Validity**

- For supervised classification we have a variety of measures to evaluate how good our model is
  - Accuracy, precision, recall
- For cluster analysis, the analogous question is how to evaluate the "goodness" of the resulting clusters?
- But "clusters are in the eye of the beholder"!
- Then why do we want to evaluate them?
  - To avoid finding patterns in noise
  - To compare clustering algorithms
  - To compare two sets of clusters
  - To compare two clusters

#### **Clusters found in Random Data**



#### **Measures of Cluster Validity**

- Numerical measures that are applied to judge various aspects of cluster validity, are classified into the following three types.
  - External Index: Used to measure the extent to which cluster labels match externally supplied class labels.
    - Entropy
  - Internal Index: Used to measure the goodness of a clustering structure *without* respect to external information.
    - Sum of Squared Error (SSE)
  - Relative Index: Used to compare two different clusterings or clusters.
    - Often an external or internal index is used for this function, e.g., SSE or entropy
- Sometimes these are referred to as criteria instead of indices
  - However, sometimes criterion is the general strategy and index is the numerical measure that implements the criterion.

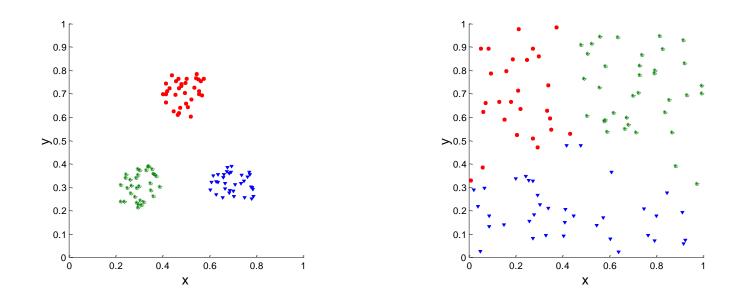
## **Measuring Cluster Validity Via Correlation**

#### • Two matrices

- Proximity Matrix
- "Incidence" Matrix
  - One row and one column for each data point
  - An entry is 1 if the associated pair of points belong to the same cluster
  - An entry is 0 if the associated pair of points belongs to different clusters
- Compute the correlation between the two matrices
  - Since the matrices are symmetric, only the correlation between n(n-1) / 2 entries needs to be calculated.
- High correlation indicates that points that belong to the same cluster are close to each other.
- Not a good measure for some density or contiguity based clusters.

#### **Measuring Cluster Validity Via Correlation**

 Correlation of incidence and proximity matrices for the K-means clusterings of the following two data sets.

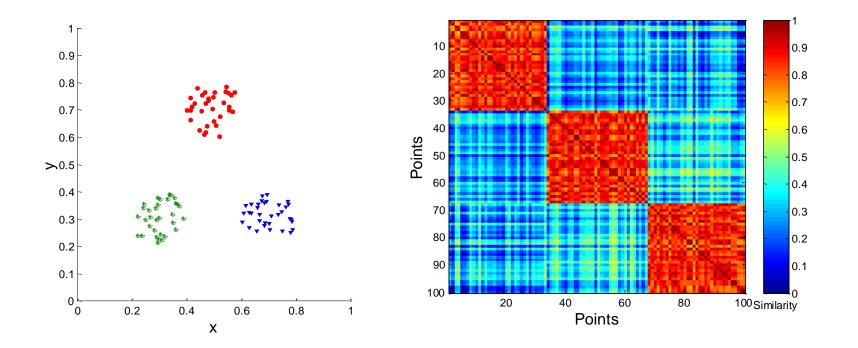


Corr = -0.9235

Corr = -0.5810

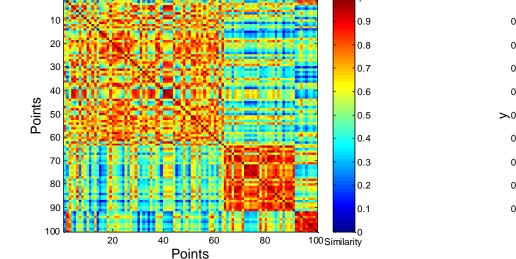
| © Tan,Steinbach, Kumar Introduction to Data Mining | 4/18/2004 (#> |  |
|----------------------------------------------------|---------------|--|
|----------------------------------------------------|---------------|--|

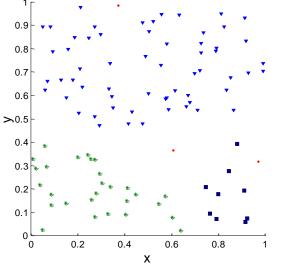
• Order the similarity matrix with respect to cluster labels and inspect visually.



| 🛛 Tan,Steinbach, Kumar |  |
|------------------------|--|
|------------------------|--|

• Clusters in random data are not so crisp

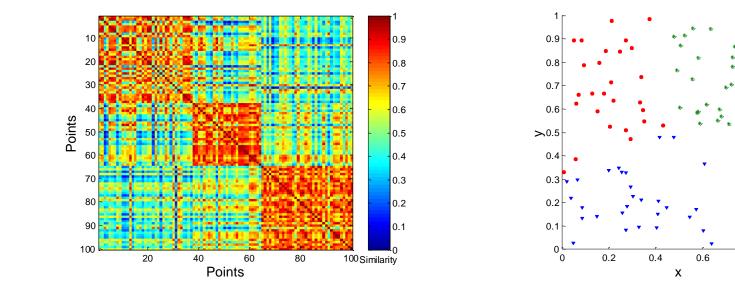




DBSCAN

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |
|------------------------|-----------------------------|-----------|--|
|------------------------|-----------------------------|-----------|--|

• Clusters in random data are not so crisp

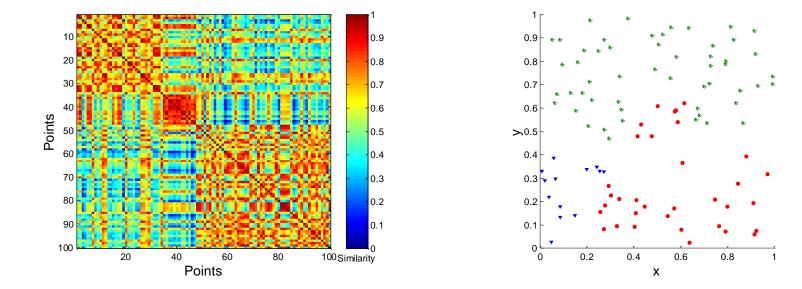


**K-means** 

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <#> |
|------------------------|-----------------------------|-----------|-----|

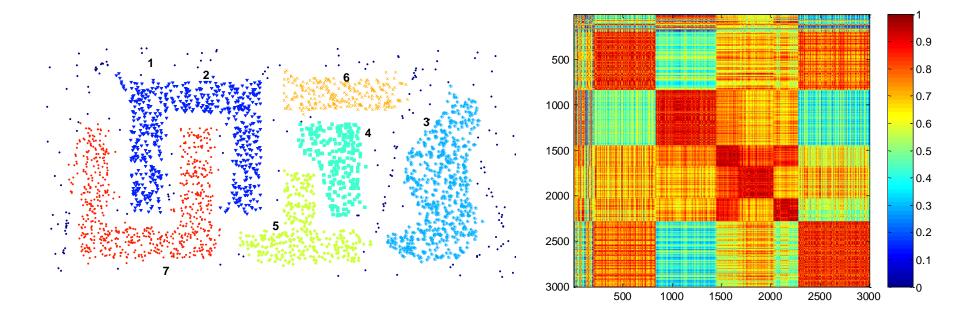
0.8

• Clusters in random data are not so crisp



#### **Complete Link**

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <b>&lt;#</b> > |  |
|------------------------|-----------------------------|-----------|----------------|--|



DBSCAN

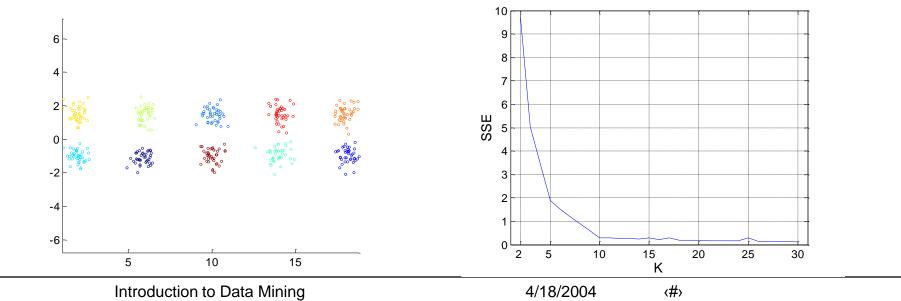
| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 | <#> |
|------------------------|-----------------------------|-----------|-----|

## **Internal Measures: SSE**

- Clusters in more complicated figures aren't well separated
- Internal Index: Used to measure the goodness of a clustering structure without respect to external information
  - SSE

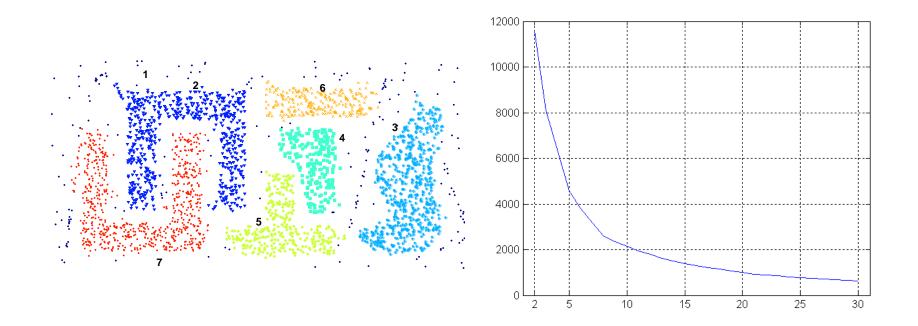
© Tan, Steinbach, Kumar

- SSE is good for comparing two clusterings or two clusters (average SSE).
- Can also be used to estimate the number of clusters



## **Internal Measures: SSE**

• SSE curve for a more complicated data set



#### **SSE of clusters found using K-means**

| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |
|------------------------|-----------------------------|-----------|--|
|------------------------|-----------------------------|-----------|--|

#### **Internal Measures: Cohesion and Separation**

- Cluster Cohesion: Measures how closely related are objects in a cluster
  - Example: SSE
- Cluster Separation: Measure how distinct or wellseparated a cluster is from other clusters
- Example: Squared Error

- Cohesion is measured by the within cluster sum of squares (SSE)  

$$WSS = \sum_{i} \sum_{x \in C_i} (x - m_i)^2$$

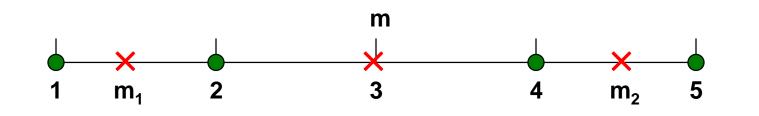
- Separation is measured by the between cluster sum of squares

$$BSS = \sum_{i} |C_{i}| (m - m_{i})^{2}$$
  
- Where  $|C_{i}|$  is the size of cluster i

**‹#**>

#### **Internal Measures: Cohesion and Separation**

- Example: SSE
  - BSS + WSS = constant



K=1 cluster:

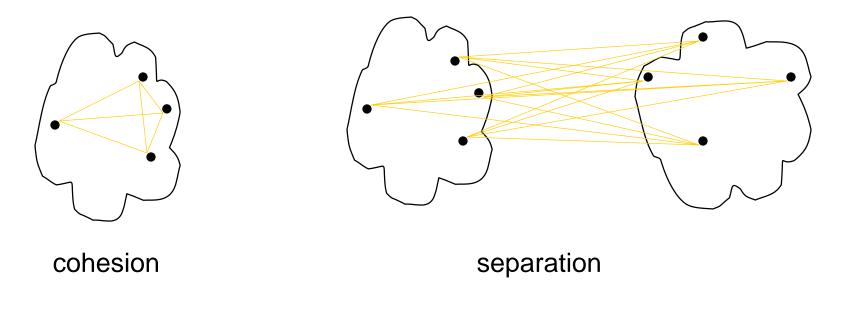
 $WSS = (1-3)^{2} + (2-3)^{2} + (4-3)^{2} + (5-3)^{2} = 10$ BSS = 4 × (3-3)^{2} = 0 Total = 10 + 0 = 10

K=2 clusters:  $WSS = (1-1.5)^2 + (2-1.5)^2 + (4-4.5)^2 + (5-4.5)^2 = 1$   $BSS = 2 \times (3-1.5)^2 + 2 \times (4.5-3)^2 = 9$ Total = 1+9 = 10

|  | <#> | 8/2004 | Introduction to Data Mining | © Tan,Steinbach, Kumar |
|--|-----|--------|-----------------------------|------------------------|
|--|-----|--------|-----------------------------|------------------------|

#### **Internal Measures: Cohesion and Separation**

- A proximity graph based approach can also be used for cohesion and separation.
  - Cluster cohesion is the sum of the weight of all links within a cluster.
  - Cluster separation is the sum of the weights between nodes in the cluster and nodes outside the cluster.



| © Tan,Steinbach, Kumar | Introduction to Data Mining | 4/18/2004 |  |  |
|------------------------|-----------------------------|-----------|--|--|
|------------------------|-----------------------------|-----------|--|--|

## **Final Comment on Cluster Validity**

"The validation of clustering structures is the most difficult and frustrating part of cluster analysis.

Without a strong effort in this direction, cluster analysis will remain a black art accessible only to those true believers who have experience and great courage."

Algorithms for Clustering Data, Jain and Dubes