
COM/BLM 426
Information Security

Asst. Prof. Dr. Bulent TUGRUL
btugrul@eng.ankara.edu.tr

Slides are mainly based on:

Understanding Cryptography: A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

Springer, 1st Edition, 2010

1

mailto:btugrul@eng.ankara.edu.tr
http://www.crypto-textbook.com/

Understanding Cryptography – A Textbook for
Students and Practitioners

by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 7 – The RSA Cryptosystem
ver. December 7, 2010

These slides were prepared by Benedikt Driessen, Ch ristof Paar and Jan Pelzl

2/34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Some legal stuff (sorry): Terms of use

• The slides can used free of charge. All copyrights for the slides

remain with Christof Paar and Jan Pelzl.

• The title of the accompanying book “Understanding Cryptography”

by Springer and the author’s names must remain on each slide.

• If the slides are modified, appropriate credits to the book authors

and the book title must remain within the slides.

• It is not permitted to reproduce parts or all of the slides in printed

form whatsoever without written consent by the authors.

3 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

4 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

5 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�The RSA Cryptosystem

• Martin Hellman and Whitfield Diffie published their landmark public-

key paper in 1976

• Ronald Rivest, Adi Shamir and Leonard Adleman proposed the

asymmetric RSA cryptosystem in1977

• Until now, RSA is the most widely use asymmetric cryptosystem

although elliptic curve cryptography (ECC) becomes increasingly

popular

• RSA is mainly used for two applications

• Transport of (i.e., symmetric) keys (cf. Chptr 13 of Understanding

Cryptography)

• Digital signatures (cf. Chptr 10 of Understanding Cryptography)

6 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Encryption and Decryption

• RSA operations are done over the integer ring Zn (i.e., arithmetic

modulo n), where n = p * q, with p, q being large primes

• Encryption and decryption are simply exponentiations in the ring

• In practice x, y, n and d are very long integer numbers (≥ 1024 bits)

• The security of the scheme relies on the fact that it is hard to derive

the „private exponent“ d given the public-key (n, e)

Definition

Given the public key (n,e) = kpub and the private key d = kpr we write

y = ekpub(x) ≡ xe mod n

x = dkpr(y) ≡ yd mod n

where x, y ε Zn.

We call ekpub() the encryption and dkpr() the decryption operation.

7 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Key Generation
• Like all asymmetric schemes, RSA has set-up phase during which

the private and public keys are computed

Remarks:

• Choosing two large, distinct primes p, q (in Step 1) is non-trivial

• gcd(e, Φ(n)) = 1 ensures that e has an inverse and, thus, that there

is always a private key d

Algorithm: RSA Key Generation

Output : public key: kpub = (n, e) and private key kpr = d

1. Choose two large primes p, q

2. Compute n = p * q

3. Compute Φ(n) = (p-1) * (q-1)

4. Select the public exponent e ε {1, 2, …, Φ(n)-1} such that

gcd(e, Φ(n)) = 1

5. Compute the private key d such that d * e ≡ 1 mod Φ(n)

6. RETURN kpub = (n, e), kpr = d

8 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Example: RSA with small numbers

ALICE

Message x = 4

y = xe ≡ 43 ≡ 31 mod 33

BOB

1. Choose p = 3 and q = 11

2. Compute n = p * q = 33

3. Φ(n) = (3-1) * (11-1) = 20

4. Choose e = 3

5. d ≡ e-1 ≡7 mod 20

yd = 317 ≡ 4 = x mod 33

Kpub = (33,3)

y = 31

9 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

10 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Implementation aspects

• The RSA cryptosystem uses only one arithmetic operation (modular

exponentiation) which makes it conceptually a simple asymmetric

scheme

• Even though conceptually simple, due to the use of very long

numbers, RSA is orders of magnitude slower than symmetric

schemes, e.g., DES, AES

• When implementing RSA (esp. on a constrained device such as

smartcards or cell phones) close attention has to be paid to the

correct choice of arithmetic algorithms

• The square-and-multiply algorithm allows fast exponentiation, even

with very long numbers…

11 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Square-and-Multiply
• Basic principle : Scan exponent bits from left to right and

square/multiply operand accordingly

• Rule: Square in every iteration (Step 3) and multiply current result

by x if the exponent bit hi = 1 (Step 5)

• Modulo reduction after each step keeps the operand y small

Algorithm: Square-and-Multiply for xH mod n

Input: Exponent H, base element x, Modulus n

Output : y = xH mod n

1. Determine binary representation H = (ht, ht-1, ..., h0)2

2. FOR i = t-1 TO 0

3. y = y2 mod n

4. IF hi = 1 THEN

5. y = y * x mod n

6. RETURN y

12 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Example: Square-and-Multiply

• Computes x26 without modulo reduction

• Binary representation of exponent: 26 =(1,1,0,1,0)2=(h4,h3,h2,h1,h0)2

• Observe how the exponent evolves into x26 = x11010

Step Binary exponent Op Comment

1 x = x1 (1)2 Initial setting, h4 processed

1a (x1)2 = x2 (10)2 SQ Processing h3

1b x2 * x = x3 (11)2 MUL h3 = 1

2a (x3)2 = x6 (110)2 SQ Processing h2

2b - (110)2 - h0 = 0

3a (x6)2 = x12 (1100)2 SQ Processing h1

3b x12 * x = x13 (1101)2 MUL h1=1

4a (x13)2 = x26 (11010)2 SQ Processing h0

4b - (11010)2 - h0 = 0

13 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Complexity of Square-and-Multiply Alg.

• The square-and-multiply algorithm has a logarithmic complexity, i.e.,

its run time is proportional to the bit length (rather than the absolute

value) of the exponent

• Given an exponent with t+1 bits

H = (ht,ht-1, ..., h0)2

with ht = 1, we need the following operations

• # Squarings = t

• Average # multiplications = 0.5 t

• Total complexity: #SQ + #MUL = 1.5 t

• Exponents are often randomly chosen, so 1.5 t is a good estimate

for the average number of operations

• Note that each squaring and each multiplication is an operation with

very long numbers, e.g., 2048 bit integers.

14 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Speed-Up Techniques

• Modular exponentiation is computationally intensive

• Even with the square-and-multiply algorithm, RSA can be quite slow

on constrained devices such as smart cards

• Some important tricks:

• Short public exponent e

• Chinese Remainder Theorem (CRT)

• Exponentiation with pre-computation (not covered here)

15 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Fast encryption with small public exponent
• Choosing a small public exponent e does not weaken the security of

RSA

• A small public exponent improves the speed of the RSA encryption

significantly

• This is a commonly used trick (e.g., SSL/TLS, etc.) and makes RSA

the fastest asymmetric scheme with regard to encryption!

Public Key e as binary string #MUL + #SQ

21+1 = 3 (11)2 1 + 1 = 2

24+1 = 17 (1 0001)2 4 + 1 = 5

216 + 1 (1 0000 0000 0000 0001)2 16 + 1 = 17

16 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Fast decryption with CRT

• Choosing a small private key d results in security weaknesses!

• In fact, d must have at least 0.3t bits, where t is the bit

length of the modulus n

• However, the Chinese Remainder Theorem (CRT) can be used to

(somewhat) accelerate exponentiation with the private key d

• Based on the CRT we can replace the computation of

xd mod Φ(n) mod n

by two computations

xd mod (p-1) mod p and xd mod (q-1) mod q

where q and p are „small“ compared to n

17 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Basic principle of CRT-based exponentiation

• CRT involves three distinct steps

(1) Transformation of operand into the CRT domain

(2) Modular exponentiation in the CRT domain

(3) Inverse transformation into the problem domain

• These steps are equivalent to one modular exponentiation in the

problem domain

x

xp

xq

Xp
d mod (p-1) mod p

Xq
d mod (q-1) mod q

xd mod n
Problem
Domain

CRT Domain

18 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�CRT: Step 1 – Transformation

• Transformation into the CRT domain requires the knowledge of p

and q

• p and q are only known to the owner of the private key, hence CRT

cannot be applied to speed up encryption

• The transformation computes (xp, xq) which is the representation of x

in the CRT domain. They can be found easily by computing

xp ≡ x mod p and xq ≡ x mod q

19 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�CRT: Step 2 – Exponentiation

• Given dp and dq such that

dp ≡ d mod (p-1) and dq ≡ d mod (q-1)

one exponentiation in the problem domain requires two

exponentiations in the CRT domain

yp ≡ xp
dp mod p and yq ≡ xq

dq mod q

• In practice, p and q are chosen to have half the bit length of n, i.e.,

|p| ≈ |q| ≈ |n|/2

20 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�CRT: Step 3 – Inverse Transformation

• Inverse transformation requires modular inversion twice, which is

computationally expensive

cp ≡ q-1 mod p and cq ≡ p-1 mod q

• Inverse transformation assembles yp, yq to the final result y mod n in

the problem domain

y ≡ [q * cp] * yp + [p * cq] * yq mod n

• The primes p and q typically change infrequently, therefore the cost

of inversion can be neglected because the two expresssions

[q * cp] and [p * cq]

can be precomputed and stored

21 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Complexity of CRT
• We ignore the transformation and inverse transformation steps since

their costs can be neglected under reasonable assumptions

• Assuming that n has t+1 bits, both p and q are about t/2 bits long

• The complexity is determined by the two exponentiations in the CRT

domain. The operands are only t/2 bits long. For the exponentiations

we use the square-and-multiply algorithm:

• # squarings (one exp.): #SQ = 0.5 t

• # aver. multiplications (one exp.): #MUL = 0.25t

• Total complexity: 2 * (#MUL + #SQ) = 1.5t

• This looks the same as regular exponentations, but since the

operands have half the bit length compared to regular exponent.,

each operation (i.e., multipl. and squaring) is 4 times faster!

• Hence CRT is 4 times faster than straightforward exponentiation

22 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

23 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Finding Large Primes

• Generating keys for RSA requires finding two large primes p and q

such that n = p * q is sufficiently large

• The size of p and q is typically half the size of the desired size of n

• To find primes, random integers are generated and tested for

primality:

• The random number generator (RNG) should be non-predictable

otherwise an attacker could guess the factorization of n

RNG Primality Test
p' „p‘ is prime“

OR
„p‘ is composite“

a

candidate
prime

24 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Primality Tests

• Factoring p and q to test for primality is typically not feasible

• However, we are not interested in the factorization, we only want to

know whether p and q are composite

• Typical primality tests are probabilistic, i.e., they are not 100%

accurate but their output is correct with very high probability

• A probabilistic test has two outputs:

• „p‘ is composite“ – always true

• „p‘ is a prime“ – only true with a certain probability

• Among the well-known primality tests are the following

• Fermat Primality-Test

• Miller-Rabin Primality-Test

25 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Fermat Primality-Test

• Basic idea: Fermat‘s Little Theorem holds for all primes, i.e., if a

number p‘ is found for which ap‘-1 ≡ 1 mod p‘, it is not a prime

• For certain numbers („Carchimchael numbers“) this test returns „p‘

is likely a prime“ often – although these numbers are composite

• Therefore, the Miller-Rabin Test is preferred

Algorithm: Fermat Primality-Test

Input: Prime candidate p‘, security parameter s

Output : „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. IF ap‘-1 ≡ 1 mod p’ THEN

4. RETURN „p‘ is composite“

5. RETURN „p‘ is likely a prime“

26 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Theorem for Miller-Rabin‘s test

• The more powerful Miller-Rabin Test is based on the following

theorem

• This theorem can be turned into an algorithm

Theorem

Given the decomposition of an odd prime candidate p‘

p‘ – 1 = 2u * r

where r is odd. If we can find an integer a such that

ar ≡ 1 mod p‘ and ar2j
≡ p‘ - 1 mod p‘

For all j = {0,1, ..., u-1}, then p‘ is composite.

Otherwise it is probably a prime.

27 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Miller-Rabin Primality-Test

Algorithm: Miller-Rabin Primality-Test

Input: Prime candidate p‘ with p‘-1 = 2u * r security parameter s

Output : „p‘ is composite“ or „p‘ is likely a prime“

1. FOR i = 1 TO s

2. choose random a ε {2,3, ..., p‘-2}

3. z ≡ ar mod p’

4. IF z≠ 1 AND z ≠ p’-1 THEN

5. FOR j = 1 TO u-1

6. z ≡ z2 mod p’

7. IF z = 1 THEN

8. RETURN „p‘ is composite“

9. IF z ≠ p‘-1 THEN

10. RETURN „p‘ is composite“

11. RETURN „p‘ is likely a prime“

28 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

29 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Attacks and Countermeasures 1/3

• There are two distinct types of attacks on cryptosystems

• Analytical attacks try to break the mathematical structure of the

underlying problem of RSA

• Implementation attacks try to attack a real-world

implementation by exploiting inherent weaknesses in the way

RSA is realized in software or hardware

30 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Attacks and Countermeasures 2/3

RSA is typically exposed to these analytical attack vectors

• Mathematical attacks

• The best known attack is factoring of n in order to obtain Φ(n)

• Can be prevented using a sufficiently large modulus n

• The current factoring record is 664 bits. Thus, it is recommended

that n should have a bit length between 1024 and 3072 bits

• Protocol attacks

• Exploit the malleability of RSA, i.e., the property that a ciphertext

can be transformed into another ciphertext which decrypts to a

related plaintext – without knowing the private key

• Can be prevented by proper padding

31 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Attacks and Countermeasures 3/3

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g.,

power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can

lead to a complete leakage of the private key

More on all attacks can be found in Section 7.8 of Understanding Cryptography

32 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Attacks and Countermeasures 2/2

• RSA is typically exposed to these analytical attack vectors (cont’d)

• Protocol attacks

• Exploit the malleability of RSA

• Can be prevented by proper padding

• Implementation attacks can be one of the following

• Side-channel analysis

• Exploit physical leakage of RSA implementation (e.g.,

power consumption, EM emanation, etc.)

• Fault-injection attacks

• Inducing faults in the device while CRT is executed can

lead to a complete leakage of the private key

33 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Content of this Chapter

• The RSA Cryptosystem

• Implementation aspects

• Finding Large Primes

• Attacks and Countermeasures

• Lessons Learned

34 /34 Chapter 7 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Lessons Learned

• RSA is the most widely used public-key cryptosystem

• RSA is mainly used for key transport and digital signatures

• The public key e can be a short integer, the private key d needs to

have the full length of the modulus n

• RSA relies on the fact that it is hard to factorize n

• Currently 1024-bit cannot be factored, but progress in factorization

could bring this into reach within 10-15 years. Hence, RSA with a

2048 or 3076 bit modulus should be used for long-term security

• A naïve implementation of RSA allows several attacks, and in

practice RSA should be used together with padding

