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� The slides can used free of charge. All copyrights for the slides remain with  

Christof Paar and Jan Pelzl. 

� The title of the accompanying book “Understanding Cryptography” by Springer 

and the author’s names must remain on each slide.

� If the slides are modified, appropriate credits to the book authors and the book 

title must remain within the slides. 

� It is not permitted to reproduce parts or all of the slides in printed form 

whatsoever without written consent by the authors.

� Some legal stuff (sorry): Terms of Use
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� Diffie–Hellman Key Exchange

� The Discrete Logarithm Problem 

� Security of the Diffie–Hellman Key Exchange 

� The Elgamal Encryption Scheme 

� Content of this Chapter
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� Proposed in 1976 by Whitfield Diffie and Martin Hellman

� Widely used , e.g. in Secure Shell (SSH), Transport Layer Security (TLS), and 

Internet Protocol Security (IPSec)

� The Diffie–Hellman Key Exchange (DHKE) is a key exchange protocol and not 

used for encryption

(For the purpose of encryption based on the DHKE, ElGamal can be used.)

� Diffie–Hellman Key Exchange: Overview
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�Diffie–Hellman Key Exchange: Set-up

1. Choose a large prime p.

2. Choose an integer α ∈ {2,3, . . . , p−2}.

3. Publish p and α.
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Alice

�Diffie–Hellman Key Exchange

Bob

Choose random private key
kprA=a ∈{1,2,…,p-1}

Choose random private key
kprB=b ∈ {1,2,…,p-1}

Compute corresponding public key
kpubA= A = αa mod p

Compute correspondig public key
kpubB= B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

yy = AESkAB(x) x = AES-1
kAB(y)
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We can now use the joint key kAB

for encryption, e.g., with AES



Alice

�Diffie–Hellman Key Exchange: Example

Bob

Choose random private key
kprA= a = 5

Choose random private key
kprB=b = 12

Compute corresponding public key
kpubA= A = 25 = 3 mod 29

Compute correspondig public key
kpubB= B = 212 = 7 mod 29

Compute common secret
kAB = Ba = 75 = 16 mod 29

Compute common secret
kAB = Ab = 312 = 16 mod 29

A

B

Domain parameters p=29, α=2

7/19 Chapter 8 of Understanding Cryptography by Christof Paar and Jan Pelzl

Proof of correctness:

Alice computes: Ba = (αb)a mod p
Bob computes:  Ab = (αa)b mod p 

i.e., Alice and Bob compute the same key kAB ! 



Discrete Logarithm Problem (DLP) in Zp*

� Given is the finite cyclic group Zp* of order p−1 and a primitive element α ∈ Zp*

and another element β ∈ Zp*. 

� The DLP is the problem of determining the integer 1 ≤ x ≤ p−1 such that

αx ≡ β mod p

� This computation is called the discrete logarithm problem (DLP)

x = logα β mod p 

� Example: Compute x  for 5x ≡ 41 mod 47

Remark: For the coverage of groups and cylcic groups, we refer to Chapter 8 of 

Understanding Cryptography

� The Discrete Logarithm Problem
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� Given is a finite cyclic group G with the group operation ◦ and cardinality n. 

� We consider a primitive element α ∈ G and another element β ∈ G. 

� The discrete logarithm problem is finding the integer x, where 1 ≤ x ≤ n, such 

that: 

β = α ◦ α ◦ α ◦. . .◦ α = αx

� The Generalized Discrete Logarithm Problem

x times
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The following discrete logarithm problems have been proposed for use in 

cryptography

1. The multiplicative group of the prime field Zp or a subgroup of it. For instance, 

the classical DHKE uses this group (cf. previous slides), but also Elgamal 

encryption or the Digital Signature Algorithm (DSA). 

2. The cyclic group formed by an elliptic curve (see Chapter 9)

3. The multiplicative group of a Galois field GF(2m) or a subgroup of it. Schemes 

such as the DHKE can be realized with them. 

4. Hyperelliptic curves or algebraic varieties, which can be viewed as 

generalization of elliptic curves. 

Remark: The groups 1. and 2. are most often used in practice.

� The Generalized Discrete Logarithm Problem
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� Security of many asymmetric primitives is based on the difficulty of computing 

the DLP in cyclic groups, i.e.,

Compute x for a given α and β such that β = α ◦ α ◦ α ◦. . .◦ α = αx

� The following algorithms for computing discrete logarithms exist

• Generic algorithms: Work in any cyclic group

− Brute-Force Search

− Shanks‘ Baby-Step-Giant-Step Method

− Pollard‘s Rho Method

− Pohlig-Hellman Method

• Non-generic Algorithms: Work only in specific groups, in particular in Zp

− The Index Calculus Method

� Remark: Elliptic curves can only be attacked with generic algorithms which are 

weaker than non-generic algorithms. Hence, elliptic curves are secure with 

shorter key lengths than the DLP in prime fields Zp

� Attacks against the Discrete Logarithm Problem
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Summary of records for computing discrete logarithms in Zp*

� Attacks against the Discrete Logarithm Problem

Decimal digits Bit length Date

58 193 1991

68 216 1996

85 282 1998

100 332 1999

120 399 2001

135 448 2006

160 532 2007
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In order to prevent attacks that compute the DLP, it is recommended to use primes 

with a length of at least 1024 bits for schemes such as Diffie-Hellman in Zp*



� Which information does Oscar have?

• α, p

• kpubA = A = αa mod p

• kpubB = B = αb mod p

� Which information does Oscar want to have?

• kAB = αba = αab = mod p

• This is kown as Diffie-Hellman Problem (DHP)

� The only known way to solve the DHP is to solve the DLP, i.e.

1.Compute a = logα A mod p

2.Compute kAB = Ba = αba = mod p

It is conjectured that the DHP and the DLP are equivalent, i.e., solving the 

DHP implies solving the DLP.

� To prevent attacks, i.e., to prevent that the DLP can be solved, choose

p > 21024

� Security of the classical Diffie–Hellman Key Exchan ge 
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� Proposed by Taher Elgamal in 1985

� Can be viewed as an extension of the DHKE protocol

� Based on the intractability of the discrete logarithm problem and the Diffie–

Hellman problem

� The Elgamal Encryption Scheme: Overview
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� The Elgamal Encryption Scheme: Principle

Alice Bob

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute ephemeral key
kE = kpubA= αi mod p

compute kM = kE
d mod p

compute kM = βi mod p

encrypt message x ∈ Zp*:
y = x·kM mod p

kE

y

β

decrypt x = y·kM
-1 mod p
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This looks very similar to the DHKE! The actual Elgamal protocol re-orders 

the computations which helps to save one communication (cf. next slide)



� The Elgamal Encryption Protocol

Alice Bob
choose large prime p

choose primitive element  α ∈ Zp*
or in a subgroup of Zp*

choose d = kprB ∈ {2,…,p-2}

compute β = kpubB= αd mod p

choose i = kprA ∈ {2,…,p-2}

compute kE = kpubA= αi mod p

compute masking key  kM = βi mod p

compute masking key kM = kE
d mod p

encrypt message x ∈ Zp*:
y = x·kM mod p (kE, y)

kpubB = (p, α, β)

decrypt x = y·kM
-1 mod p
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� Key Generation

• Generation of prime p 

• p has to of size of at least 1024 bits

• cf. Section 7.6 in Understanding Cryptography for prime-finding algorithms

� Encryption

• Requires two modular exponentiations and a modular multiplictation

• All operands have a bitlength of  log2p

• Efficient execution requires methods such as the square-and-multiply algorithm 

(cf. Chapter 7)

� Decryption

• Requires one modular exponentiation and one modulare inversion

• As shown in Understanding Cryptography, the inversion can be computed from the 

ephemeral key

� Computational Aspects
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� Passive attacks

• Attacker eavesdrops p, α, β = αd , kE = αi, y = x· βi and wants to recover x

• Problem relies on the DLP

� Active attacks

• If  the public keys are not authentic, an attacker could send an incorrect 

public key (cf. Chapter 13)

• An Attack is also possible if the secret exponent i is being used more than 

once (cf. Understanding Cryptography for more details on the attack)

� Security
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� The Diffie–Hellman protocol is a widely used method for key exchange. It is 

based on cyclic groups.

� The discrete logarithm problem is one of the most important one-way 

functions in modern asymmetric cryptography. Many public-key algorithms 

are based on it.

� For the Diffie–Hellman protocol in Zp*, the prime p should be at least 1024 

bits long. This provides a security roughly equivalent to an 80-bit symmetric 

cipher.

� For a better long-term security, a prime of length 2048 bits should be chosen. 

� The Elgamal scheme is an extension of the DHKE where the derived session 

key is used as a multiplicative masked to encrypt a message.

� Elgamal is a probabilistic encryption scheme, i.e., encrypting two identical 

messages does not yield two identical ciphertexts.

� Lessons Learned
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