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§  Problem:  
Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and 
fields with parameters of more than 1000 bits. 

§   High computational effort on CPUs with 32-bit or 64-bit arithmetic 

§   Large parameter sizes critical for storage on small and embedded 

§ Motivation: 
Smaller field sizes providing equivalent security are desirable 

§  Solution: 
Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic 
schemes with coefficient sizes of 160-256 bits, reducing significantly the computational 
effort. 

! Motivation 
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! Computations on Elliptic Curves 

•  Elliptic curves are polynomials that define points 
based on the (simplified) Weierstraß equation: 

          y2 = x3 + ax + b  

 

 for parameters a,b that specify the exact shape  
of the curve 

 

•  On the real numbers and with parameters  
a, b    R, an elliptic curve looks like this à 

•  Elliptic curves can not just be defined over the 
real numbers R but over many other types of 
finite fields. 

 

Example: y2 = x3 −3x+3 over R 
 

∈
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! Computations on Elliptic Curves (ctd.) 

§  In cryptography, we are interested in elliptic curves 
module a prime p: 

 

 
  

 

 

 

 

 

 

§  Note that Zp = {0,1,…, p -1} is a set of integers 
with modulo p arithmetic  

∈

Definition: Elliptic Curves over prime fields 

 
The elliptic curve over Zp, p>3 is the set of all  
pairs (x,y)    Zp which fulfill 

 y2 = x3 + ax + b mod p 
together with an imaginary point of infinity θ, 
where a,b    Zp and the condition 
        4a3+27b2 ≠ 0 mod p. 
 

∈

∈
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! Computations on Elliptic Curves (ctd.) 

§  Some special considerations are required to convert 
elliptic curves into a group of points  

§  In any group, a special element is required to 
allow for the identity operation, i.e., 
given P   E: P + θ = P = θ + P 

§  This identity point (which is not on the curve) is 
additionally added to the group definition  

§  This (infinite) identity point is denoted by θ  
  

§  Elliptic Curve are symmetric along the x-axis 

§  Up to two solutions y and -y exist for each 
quadratic residue x of the elliptic curve 

§  For each point P =(x,y), the inverse or negative 
point is defined as -P =(x,-y)  

∈

∈

θ 

P 

-P 

∈

point at  
infinity 
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! Computations on Elliptic Curves (ctd.) 

§  Generating a group of points on elliptic curves  
based on point addition operation P+Q = R, i.e., 
 (xP,yP)+(xQ,yQ) = (xR,yR) 

§  Geometric Interpretation of point addition operation 

§ Draw straight line through P and Q; if P=Q use 
tangent line instead 

§ Mirror third intersection point of drawn line with  
the elliptic curve along the x-axis 

§  Elliptic Curve Point Addition and Doubling Formulas 

Point Addition 

Point Doubling x3 = s2 −x1−x2 mod p  and  y3 = s(x1 −x3)−y1 mod p 
 
where 
 
 
s =  
 
 

p
xx
yy mod
12

12

−

−

p
y
ax mod

2
3

1

2
1 +

; if P ≠ Q (point addition) 

; if P = Q (point doubling) =P+P	
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! Computations on Elliptic Curves (ctd.) 

§ Example: Given E: y2 = x3+2x+2 mod 17 and point P=(5,1) 
Goal: Compute 2P = P+P = (5,1)+(5,1)= (x3,y3) 
 

  s =            = (2 · 1)−1(3 · 52 + 2) = 2−1 · 9 ≡ 9 · 9 ≡ 13 mod 17 
 

  x3 = s2 − x1 − x2 = 132 − 5 − 5 = 159 ≡ 6 mod 17 
 y3 = s(x1−x3) − y1 = 13(5 − 6) − 1= −14 ≡ 3 mod 17 

 

 

 Finally 2P = (5,1) + (5,1) = (6,3) 

1

2
1

2
3
y
ax +
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! Computations on Elliptic Curves (ctd.) 

§ The points on an elliptic curve and the point at infinity θ form cyclic subgroups 
  
 2P = (5,1)+(5,1) = (6,3)   11P = (13,10) 
 3P = 2P+P = (10,6)    12P = (0,11) 
 4P = (3,1)    13P = (16,4) 
 5P = (9,16)    14P = (9,1) 
 6P = (16,13)    15P = (3,16) 
 7P = (0,6)    16P = (10,11) 
 8P = (13,7)    17P = (6,14) 
 9P = (7,6)    18P = (5,16) 

 10P = (7,11)    19P = θ 

  

 This elliptic curve has order #E = |E| = 19 since it contains  
19 points in its cyclic group. 

P 

θ 

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl 12/24 



! Number of Points on an Elliptic Curve 

•  How many points can be on an arbitrary elliptic curve? 

•  Consider previous example: E: y2 = x3+2x+2 mod 17 has 19 points 

•  However, determining the point count on elliptic curves in general is hard 

•  But Hasse‘s theorem bounds the number of points to a restricted interval 

  Definition: Hasse‘s Theorem: 

  Given an elliptic curve module p, the number of points  
 on the curve is denoted by #E and is bounded by 
  p+1-2     ≤ #E ≤ p+1+2    

 

 

•  Interpretation: The number of points is „close to“ the prime p 

•  Example: To generate a curve with about 2160 points, a prime with a length of about  
160 bits is required     

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl 

p p

13/24 



!  Elliptic Curve Discrete Logarithm Problem 

§  Cryptosystems rely on the hardness of the Elliptic Curve Discrete 
Logarithm Problem (ECDLP) 

   

  Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP) 

  Given a primitive element P and another element T on an elliptic curve E. 
 The ECDL problem is finding the integer d, where 1 ≤ d ≤ #E such that 
  P + P +…+ P = dP = T. 

           d times 

§  Cryptosystems are based on the idea that d is large and kept secret and attackers 
cannot compute it easily 

§  If d is known, an efficient method to compute the point multiplication dP is required 
to create a reasonable cryptosystem 
§  Known Square-and-Multiply Method can be adapted to Elliptic Curves 

§  The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm 
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! Double-and-Add Algorithm for Point Multiplication 

§  Double-and-Add Algorithm 

 Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits di 
Output: T = d P  

 Initialization: 

 T = P 

 Algorithm: 

 FOR i = t −1 DOWNTO 0 

     T = T +T mod n 

     IF di = 1 

           T = T +P mod n 

   RETURN (T) 
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Example: 26P = (110102)P = (d4d3d2d1d0)2 P. 
 
Step 
#0  P = 12P    inital setting 
#1a  P+P = 2P = 102P   DOUBLE (bit d3) 
#1b  2P+P = 3P = 102 P+12P = 112P  ADD (bit d3=1) 
#2a  3P+3P = 6P = 2(112P) = 1102P  DOUBLE (bit d2) 
#2b     no ADD (d2 = 0) 
#3a  6P+6P = 12P = 2(1102P) = 11002P  DOUBLE (bit d1) 
#3b  12P+P = 13P = 11002P+12 P = 11012P  ADD (bit d1=1) 
#4a  13P+13P = 26P = 2(11012P) = 110102P DOUBLE (bit d0) 
#4b     no ADD (d0 = 0) 
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!  The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) 

§  Given a prime p, a suitable elliptic curve E and a point P=(xP,yP) 

§  The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol: 
 

§  Joint secret between Alice and Bob: TAB = (xAB, yAB) 

§  Proof for correctness: 
§  Alice computes aB=a(bP)=abP 

§  Bob computes bA=b(aP)=abP since group is associative 

§  One of the coordinates of the point TAB (usually the x-coordinate) can be used as session key 
(often after applying a hash function) 
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Alice 
 
Choose kPrA= a     {2, 3,…, #E-1} 
Compute kPubA= A = aP = (xA,yA) 
 
 
 
 
Compute aB = Tab 
 

∈

Bob 
 
Choose kPrB= b     {2, 3,…, #E-1} 
Compute kPubB= B = bP = (xB,yB) 
 
 
 
 
Compute bA = Tab 
 

A 

B 

∈
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!  The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.) 

§  The ECDH is often used to derive session keys for (symmetric) encryption 

§  One of the coordinates of the point TAB (usually the x-coordinate) is taken as session key 

§  In some cases, a hash function (see next chapters) is used to derive the session key 
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Alice 
 
Choose kPrA= a     {2, 3,…, #E-1} 
Compute kPubA= A = aP = (xA,yA) 
 
 
 
 
Compute aB = Tab = (xT,yT) 
 
 
Define key kAES = xT 
 
Given a message m: 
Encrypt c = AESkAES(m) 
 
 

∈

Bob 
 
Choose kPrB= b     {2, 3,…, #E-1} 
Compute kPubB= B = bP = (xB,yB) 
 
 
 
 
Compute bA = Tab= (xT,yT) 
 
 
Define key kAES = xT 
 
 
Received ciphertext c: 
Decrypt m = AES-1

kAES(c) 
 
 

A 

B 

∈
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!  Security Aspects 

§ Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA 
(1024-3076 bit)? 

§  Attacks on groups of elliptic curves are weaker than available factoring algorithms or 
integer DL attacks 

§  Best known attacks on elliptic curves (chosen according to cryptographic criterions) 
are the Baby-Step Giant-Step and Pollard-Rho method 

§ Complexity of these methods: on average, roughly        steps are required before the 
ECDLP can be successfully solved 

§  Implications to practical parameter sizes for elliptic curves: 

§  An elliptic curve using a prime p with 160 bit (and roughly 2160 points) provides a 
security of 280 steps that required by an attacker (on average)  

§  An elliptic curve using a prime p with 256 bit (roughly 2256 points) provides a security of 
2128 steps on average 
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!  Implementations in Hardware and Software 

§  Elliptic curve computations usually regarded as 
consisting of four layers:  

§  Basic modular arithmetic operations are 
computationally most expensive 

§  Group operation implements point doubling 
and point addition 

§  Point multiplication can be implemented 
using the Double-and-Add method 

§  Upper layer protocols like ECDH and 
ECDSA 

§  Most efforts should go in optimizations of the 
modular arithmetic operations, such as  

§  Modular addition and subtraction 

§  Modular multiplication  

§  Modular inversion 
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Protocol
(ECDSA)

Point 
Multiplication 

(k·P)

Group Operation
P+Q, 2·P

Modular Arithmetic
( +, -, x , ÷  )
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!  Implementations in Hardware and Software 

§  Software implementations 

§  Optimized 256-bit ECC implementation on 
3GHz 64-bit CPU requires about 2 ms per 
point multiplication 

§  Less powerful microprocessors (e.g, on 
SmartCards or cell phones) even take 
significantly longer (>10 ms) 

§  Hardware implementations  

§  High-performance implementations with 
256-bit special primes can compute a point 
multiplication in a few hundred 
microseconds on reconfigurable hardware 

§  Dedicated chips for ECC can compute a 
point multiplication even in a few ten 
microseconds 
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§ Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. 
It requires, for instance, arithmetic modulo a prime. 

§ ECC can be used for key exchange, for digital signatures and for encryption. 

§ ECC provides the same level of security as RSA or discrete logarithm systems 
over Zp with considerably shorter operands (approximately 160–256 bit vs. 
1024–3072 bit), which results in shorter ciphertexts and signatures. 

§  In many cases ECC has performance advantages over other public-key 
algorithms. 

§ ECC is slowly gaining popularity in applications, compared to other public-key 
schemes, i.e., many new applications, especially on embedded platforms, 
make use of elliptic curve cryptography. 
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