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title must remain within the slides.

* |t is not permitted to reproduce parts or all of the slides in printed form
whatsoever without written consent by the authors.
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B Motivation

" Problem:
Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and
fields with parameters of more than 1000 bits.

= High computational effort on CPUs with 32-bit or 64-bit arithmetic
= Large parameter sizes critical for storage on small and embedded

= Motivation:
Smaller field sizes providing equivalent security are desirable

= Solution:
Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic
schemes with coefficient sizes of 160-256 bits, reducing significantly the computational
effort.
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B Computations on Elliptic Curves

* Elliptic curves are polynomials that define points Y A

7124

based on the (simplified) Weierstral® equation:

y?=x3+ax+b

for parameters a,b that specify the exact shape
of the curve

On the real numbers and with parameters
a, bER, an elliptic curve looks like this >

Elliptic curves can not just be defined over the
real numbers R but over many other types of
finite fields.

Example: y? = x3 -3x+3 over R
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B Computations on Elliptic Curves (ctd.)

" In cryptography, we are interested in elliptic curves
module a prime p:

YA

Definition: Elliptic Curves over prime fields

The elliptic curve over Z,, p>3 is the set of all
pairs (x,y) € Z, which fulfill
y2=x3+ax+b modp
together with an imaginary point of infinity 6,
where a,b € Z, and the condition X
4a3+27b? # 0 mod p.

= Note that Zp ={0,1,..., p -1} is a set of integers
with modulo p arithmetic
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B Computations on Elliptic Curves (ctd.)

= Some special considerations are required to convert
elliptic curves into a group of points €

= |n any group, a special element is required to YA
allow for the identity operation, i.e.,
given PEE:P+06=P=0+P

= This identity point (which is not on the curve) is

. _ P
additionally added to the group definition : point at
= This (infinite) identity point is denoted by 6 / infinity
! o >
= Elliptic Curve are symmetric along the x-axis i X

= Up to two solutions y and -y exist for each
quadratic residue x of the elliptic curve

= For each point P =(x,y), the inverse or negative
point is defined as -P =(x,-y)

e
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B Computations on Elliptic Curves (ctd.)

= Generating a group of points on elliptic curves

= Geometric Interpretation of point addition operation

= Elliptic Curve Point Addition and Doubling Formulas

10/24

based on point addition operation P+Q =R, i.e.,
(Xp:Yp) (X Yo) = (Xr:YrR)

1{)

>|Q

[ Point Addition

N .
= Draw straight line through P and Q; if P=Q use \/ > : '
tangent line instead !
= Mirror third intersection point of drawn line with
the elliptic curve along the x-axis
Y

22 mod p ; if P # Q (point addition)
X2— X1

2
3x; +a

21

P
X3 =82 -x,~x, mod p and y; = s(x, —=X3)—y, mod p 7’<
where L

mod p ; if P =Q (point doubling)
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B Computations on Elliptic Curves (ctd.)

= Example: Given E: y? = x3+2x+2 mod 17 and point P=(5,1)
Goal: Compute 2P = P+P = (5,1)+(5,1)= (X3,¥5)

2
5= 3’;;1“ =(2-1)7(3-52+2)=271-9=29-9= 13 mod 17

X;=82-X, - X,=132-5-5= 159 = 6 mod 17
Y3=8(X;~X3) =y, =13(5 - 6) - 1=-14 =3 mod 17

Finally 2P = (5,1) + (5,1) = (6,3)
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B Computations on Elliptic Curves (ctd.)

= The points on an elliptic curve and the point at infinity 6 form cyclic subgroups

2P = (5,1)+(5,1) = (6,3) 11P = (13,10)
3P = 2P+P = (10,6) 12P = (0,11)

4P = (3,1) 13P = (16,4)

5P = (9,16) 14P = (9,1)

6P = (16,13) 15P = (3,16) y

7P = (0,6) 16P = (10,11)

8P = (13,7) 17P = (6,14)

9P = (7,6) 18P = (5,16) )
10P = (7,11) 19P = 6

This elliptic curve has order #E = |E| = 19 since it contains
19 points in its cyclic group.
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B Number of Points on an Elliptic Curve

* How many points can be on an arbitrary elliptic curve?
* Consider previous example: E: y? = x3+2x+2 mod 17 has 19 points
* However, determining the point count on elliptic curves in general is hard

* But Hasse's theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points
on the curve is denoted by #E and is bounded by

p+1-2,[pS #E < p+1+2 [p

* Interpretation: The number of points is ,close to“ the prime p

* Example: To generate a curve with about 2160 points, a prime with a length of about
160 bits is required
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B Elliptic Curve Discrete Logarithm Problem

= Cryptosystems rely on the hardness of the Elliptic Curve Discrete
Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.
The ECDL problem is finding the integer d, where 1 < d < #E such that
P+P+.+P=dP=T.

~
d times

= Cryptosystems are based on the idea that d is large and kept secret and attackers
cannot compute it easily

= |f d is known, an efficient method to compute the point multiplication dP is required
to create a reasonable cryptosystem
= Known Square-and-Multiply Method can be adapted to Elliptic Curves

= The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm
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B Double-and-Add Algorithm for Point Multiplication

" Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits d,

Output: T=dP
Initialization:
T=P
Algorithm:
FOR i=t-1 DOWNTO 0
I'=T+Tmodn
IF d;=1
I'=T+Pmodn
RETURN (T)

Example: 26P = (11010,)P = (d,d5d,d,d,), P.

Step
#0
#1a
#1b
#2a
#2b
#3a
#3b
#4a
#4b

P=1,P inital setting
P+P=2P=10,P DOUBLE (bit dj)
2P+P =3P =102 P+1,P=11,P ADD (bit d;=1)
3P+3P = 6P =2(11,P) = 110,P DOUBLE (bit d,)

no ADD (d, = 0)
6P+6P = 12P = 2(110,P) = 1100,P DOUBLE (bit d,)
12P+P=13P=1100,P+1, P=1101,P ADD (bit d,=1)
13P+13P = 26P = 2(1101,P) = 11010,P DOUBLE (bit d;)

no ADD (d, = 0)
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B The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

= Given a prime p, a suitable elliptic curve E and a point P=(xp,yp)

= The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

= Joint secret between Alice and Bob: T,g = (Xag, Yag)

Alice

Choose kpp= @€ {2, 3,..., #E-1}
Compute Kpypoa=A =aP = (X,,¥4)

A

v

Compute aB=T,,

" Proof for correctness:

= Alice computes aB=a(bP)=abP

= Bob computes bA=b(aP)=abP since group is associative

Bob

Choose kp,g= b€ {2, 3,..., #E-1}
Compute Kp p,g= B = bP = (xz,¥5)

Compute bA=T_,

= One of the coordinates of the point T,g (usually the x-coordinate) can be used as session key
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(often after applying a hash function)
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B The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

= The ECDH is often used to derive session keys for (symmetric) encryption

= One of the coordinates of the point T,g (usually the x-coordinate) is taken as session key

Alice

Choose kpp= @€ {2, 3,..., #E-1}
Compute Kpypoa=A =aP = (X,,¥4)

Compute aB =T, = (X1, ¥7)

A

v

Define key Kjgs = X7

Given a message m:

Bob

Choose keg= b < {2, 3,..., #E-1}
Compute kp,g= B = bP = (Xg,Y5)

Compute bA = T_,= (X1,¥7)

Encrypt ¢ = AES, 15(m)

v

Define key kyes = X7

Received ciphertext c:
Decrypt m = AES7, ,£5(C)

ECDH

" |n some cases, a hash function (see next chapters) is used to derive the session key
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B Security Aspects

= Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA
(1024-3076 bit)?

= Attacks on groups of elliptic curves are weaker than available factoring algorithms or
integer DL attacks

= Best known attacks on elliptic curves (chosen according to cryptographic criterions)
are the Baby-Step Giant-Step and Pollard-Rho method

= Complexity of these methods: on average, roughly \/; steps are required before the
ECDLP can be successfully solved

= Implications to practical parameter sizes for elliptic curves:

= An elliptic curve using a prime p with 160 bit (and roughly 2'6° points) provides a
security of 280 steps that required by an attacker (on average)

= An elliptic curve using a prime p with 256 bit (roughly 22°¢ points) provides a security of
2128 steps on average

20/24 Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl



B Content of this Chapter

21/24

Introduction

Computations on Elliptic Curves

The Elliptic Curve Diffie-Hellman Protocol
Security Aspects

Implementation in Software and Hardware

Chapter 9 of Understanding Cryptography by Christof Paar and Jan Pelzl




B Implementations in Hardware and Software

= Elliptic curve computations usually regarded as
consisting of four layers:

= Basic modular arithmetic operations are
computationally most expensive

Protocol

= Group operation implements point doubling (ECDSA)

and point addition

Point
= Point multiplication can be implemented Multiplication

using the Double-and-Add method (k*P)

= Upper layer protocols like ECDH and
ECDSA

= Most efforts should go in optimizations of the
modular arithmetic operations, such as

" Modular addition and subtraction
® Modular multiplication

= Modular inversion
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B Implementations in Hardware and Software

= Software implementations

= Optimized 256-bit ECC implementation on
3GHz 64-bit CPU requires about 2 ms per
point multiplication

= Less powerful microprocessors (e.g, on
SmartCards or cell phones) even take
significantly longer (>70 ms)

® Hardware implementations

= High-performance implementations with
256-bit special primes can compute a point
multiplication in a few hundred
microseconds on reconfigurable hardware

= Dedicated chips for ECC can compute a
point multiplication even in a few ten
microseconds
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B Lessons Learned

= Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem.
It requires, for instance, arithmetic modulo a prime.

= ECC can be used for key exchange, for digital signatures and for encryption.

= ECC provides the same level of security as RSA or discrete logarithm systems
over Z, with considerably shorter operands (approximately 160—-256 bit vs.
1024-3072 bit), which results in shorter ciphertexts and signatures.

= In many cases ECC has performance advantages over other public-key
algorithms.

= ECC is slowly gaining popularity in applications, compared to other public-key
schemes, i.e., many new applications, especially on embedded platforms,
make use of elliptic curve cryptography.
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