COM/BLM 426 Information Security Asst. Prof. Dr. Bulent TUGRUL btugrul@eng.ankara.edu.tr

Slides are mainly based on:
Understanding Cryptography: A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl
Springer, 1st Edition, 2010

Understanding Cryptography

by Christof Paar and Jan Pelzl
www.crypto-textbook.com

Chapter 9 - Elliptic Curve Cryptography

 ver. February 2nd, 2015These slides were prepared by Tim Güneysu, Christof Paar and Jan Pelzl

■ Some legal stuff (sorry): Terms of Use

- The slides can be used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.
- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

- Problem:

Asymmetric schemes like RSA and Elgamal require exponentiations in integer rings and fields with parameters of more than 1000 bits.

- High computational effort on CPUs with 32-bit or 64-bit arithmetic
- Large parameter sizes critical for storage on small and embedded
- Motivation:

Smaller field sizes providing equivalent security are desirable

- Solution:

Elliptic Curve Cryptography uses a group of points (instead of integers) for cryptographic schemes with coefficient sizes of 160-256 bits, reducing significantly the computational effort.

- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

- Computations on Elliptic Curves

- Elliptic curves are polynomials that define points based on the (simplified) Weierstraß equation:

$$
y^{2}=x^{3}+a x+b
$$

for parameters a,b that specify the exact shape of the curve

- On the real numbers and with parameters $a, b \in R$, an elliptic curve looks like this \rightarrow
- Elliptic curves can not just be defined over the real numbers R but over many other types of finite fields.

Example: $y^{2}=x^{3}-3 x+3$ over R

- Computations on Elliptic Curves (ctd.)

- In cryptography, we are interested in elliptic curves module a prime p :

Definition: Elliptic Curves over prime fields

The elliptic curve over $Z_{p}, p>3$ is the set of all pairs $(x, y) \in Z_{p}$ which fulfill

$$
y^{2}=x^{3}+a x+b \bmod p
$$

together with an imaginary point of infinity θ, where $a, b \in Z_{p}$ and the condition

$$
4 a^{3}+27 b^{2} \neq 0 \bmod p
$$

- Note that $Z_{p}=\{0,1, \ldots, p-1\}$ is a set of integers with modulo p arithmetic

- Computations on Elliptic Curves (ctd.)

- Some special considerations are required to convert elliptic curves into a group of points
- In any group, a special element is required to allow for the identity operation, i.e., given $P \in E: P+\theta=P=\theta+P$
- This identity point (which is not on the curve) is additionally added to the group definition
- This (infinite) identity point is denoted by θ
- Elliptic Curve are symmetric along the x-axis
- Up to two solutions y and $-y$ exist for each quadratic residue x of the elliptic curve
- For each point $P=(x, y)$, the inverse or negative point is defined as $-P=(x,-y)$

- Computations on Elliptic Curves (ctd.)

- Generating a group of points on elliptic curves based on point addition operation $P+Q=R$, i.e., $\left(x_{P}, y_{P}\right)+\left(x_{Q}, y_{Q}\right)=\left(x_{R}, y_{R}\right)$
- Geometric Interpretation of point addition operation
- Draw straight line through P and Q; if $P=Q$ use tangent line instead
- Mirror third intersection point of drawn line with the elliptic curve along the x-axis

- Elliptic Curve Point Addition and Doubling Formulas

$$
\begin{aligned}
& x_{3}=s^{2}-x_{1}-x_{2} \bmod p \text { and } y_{3}=s\left(x_{1}-x_{3}\right)-y_{1} \bmod p \\
& \text { where } \\
& s= \begin{cases}\frac{y_{2}-y_{1}}{x_{2}-x_{1}} \bmod p & ; \text { if } \mathrm{P} \neq \mathrm{Q} \text { (point addition) } \\
\frac{3 x_{1}^{2}+a}{2 y_{1}} \bmod p & ; \text { if } \mathrm{P}=\mathrm{Q} \text { (point doubling) }\end{cases}
\end{aligned}
$$

- Computations on Elliptic Curves (ctd.)

- Example: Given $E: y^{2}=x^{3}+2 x+2$ mod 17 and point $P=(5,1)$

Goal: Compute $2 P=P+P=(5,1)+(5,1)=\left(x_{3}, y_{3}\right)$

$$
\begin{aligned}
& s=\frac{3 x_{1}^{2}+a}{2 y_{1}}=(2 \cdot 1)^{-1}\left(3 \cdot 5^{2}+2\right)=2^{-1} \cdot 9 \equiv 9 \cdot 9 \equiv 13 \bmod 17 \\
& x_{3}=s^{2}-x_{1}-x_{2}=13^{2}-5-5=159 \equiv 6 \bmod 17 \\
& y_{3}=s\left(x_{1}-x_{3}\right)-y_{1}=13(5-6)-1=-14 \equiv 3 \bmod 17
\end{aligned}
$$

Finally $2 P=(5,1)+(5,1)=(6,3)$

- Computations on Elliptic Curves (ctd.)

- The points on an elliptic curve and the point at infinity θ form cyclic subgroups

$$
\begin{aligned}
& 2 P=(5,1)+(5,1)=(6,3) \\
& 3 P=2 P+P=(10,6) \\
& 4 P=(3,1) \\
& 5 P=(9,16) \\
& 6 P=(16,13) \\
& 7 P=(0,6) \\
& 8 P=(13,7) \\
& 9 P=(7,6) \\
& 10 P=(7,11)
\end{aligned}
$$

$$
\begin{aligned}
& 11 P=(13,10) \\
& 12 P=(0,11) \\
& 13 P=(16,4) \\
& 14 P=(9,1) \\
& 15 P=(3,16) \\
& 16 P=(10,11) \\
& 17 P=(6,14) \\
& 18 P=(5,16) \\
& 19 P=\theta
\end{aligned}
$$

This elliptic curve has order \#E = |E| = 19 since it contains 19 points in its cyclic group.

■ Number of Points on an Elliptic Curve

- How many points can be on an arbitrary elliptic curve?
- Consider previous example: $E: y^{2}=x^{3}+2 x+2$ mod 17 has 19 points
- However, determining the point count on elliptic curves in general is hard
- But Hasse's theorem bounds the number of points to a restricted interval

Definition: Hasse‘s Theorem:

Given an elliptic curve module p, the number of points on the curve is denoted by \#E and is bounded by

$$
p+1-2 \sqrt{p} \leq \# E \leq p+1+2 \sqrt{p}
$$

- Interpretation: The number of points is „close to" the prime p
- Example: To generate a curve with about 2^{160} points, a prime with a length of about 160 bits is required

Elliptic Curve Discrete Logarithm Problem

- Cryptosystems rely on the hardness of the Elliptic Curve Discrete Logarithm Problem (ECDLP)

Definition: Elliptic Curve Discrete Logarithm Problem (ECDLP)

Given a primitive element P and another element T on an elliptic curve E.
The ECDL problem is finding the integer d, where $1 \leq d \leq \# E$ such that

$$
\underbrace{P+P+\ldots+P}_{d \text { times }}=d P=T
$$

- Cryptosystems are based on the idea that d is large and kept secret and attackers cannot compute it easily
- If d is known, an efficient method to compute the point multiplication $d P$ is required to create a reasonable cryptosystem
- Known Square-and-Multiply Method can be adapted to Elliptic Curves
- The method for efficient point multiplication on elliptic curves: Double-and-Add Algorithm

Double-and-Add Algorithm for Point Multiplication

- Double-and-Add Algorithm

Input: Elliptic curve E, an elliptic curve point P and a scalar d with bits d_{i} Output: $T=d P$

Initialization:

$T=P$
Algorithm:
FOR $i=t-1$ DOWNTO 0

$$
T=T+T \bmod n
$$

$$
\text { IF } d_{i}=1
$$

$$
T=T+P \bmod n
$$

RETURN (T)

- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

The Elliptic Curve Diffie-Hellman Key Exchange (ECDH)

- Given a prime p, a suitable elliptic curve E and a point $P=\left(x_{P}, y_{P}\right)$
- The Elliptic Curve Diffie-Hellman Key Exchange is defined by the following protocol:

Alice Choose $\mathrm{k}_{\text {PrA }}=a \in\{2,3, \ldots, \# E-1\}$ Compute $\mathrm{k}_{\text {PubA }}=A=a P=\left(x_{A}, y_{A}\right)$	A	Bob Choose $\mathrm{k}_{\mathrm{PrB}}=b \in\{2,3, \ldots, \# E-1\}$ Compute $\mathrm{k}_{\text {PubB }}=B=b P=\left(x_{B}, y_{B}\right)$	
	B		
Compute $a B=T_{a b}$			Compute $b A=T_{a b}$

- Joint secret between Alice and Bob: $\mathrm{T}_{\mathrm{AB}}=\left(\mathrm{x}_{\mathrm{AB}}, \mathrm{y}_{\mathrm{AB}}\right)$
- Proof for correctness:
- Alice computes $\mathrm{aB}=\mathrm{a}(\mathrm{bP})=\mathrm{abP}$
- Bob computes $\mathrm{bA}=\mathrm{b}(\mathrm{aP})=a b \mathrm{P}$ since group is associative
- One of the coordinates of the point $T_{A B}$ (usually the x-coordinate) can be used as session key (often after applying a hash function)

The Elliptic Curve Diffie-Hellman Key Exchange (ECDH) (ctd.)

- The ECDH is often used to derive session keys for (symmetric) encryption
- One of the coordinates of the point $T_{A B}$ (usually the x-coordinate) is taken as session key

- In some cases, a hash function (see next chapters) is used to derive the session key
- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

Security Aspects

- Why are parameters signficantly smaller for elliptic curves (160-256 bit) than for RSA (1024-3076 bit)?
- Attacks on groups of elliptic curves are weaker than available factoring algorithms or integer DL attacks
- Best known attacks on elliptic curves (chosen according to cryptographic criterions) are the Baby-Step Giant-Step and Pollard-Rho method
- Complexity of these methods: on average, roughly \sqrt{p} steps are required before the ECDLP can be successfully solved
- Implications to practical parameter sizes for elliptic curves:
- An elliptic curve using a prime p with 160 bit (and roughly 2^{160} points) provides a security of 2^{80} steps that required by an attacker (on average)
- An elliptic curve using a prime p with 256 bit (roughly 2^{256} points) provides a security of 2^{128} steps on average
- Content of this Chapter
- Introduction
- Computations on Elliptic Curves
- The Elliptic Curve Diffie-Hellman Protocol
- Security Aspects
- Implementation in Software and Hardware

■ Implementations in Hardware and Software

- Elliptic curve computations usually regarded as consisting of four layers:
- Basic modular arithmetic operations are computationally most expensive
- Group operation implements point doubling and point addition
- Point multiplication can be implemented using the Double-and-Add method
- Upper layer protocols like ECDH and ECDSA
- Most efforts should go in optimizations of the modular arithmetic operations, such as
- Modular addition and subtraction

- Modular multiplication
- Modular inversion

■ Implementations in Hardware and Software

- Software implementations
- Optimized 256-bit ECC implementation on 3 GHz 64-bit CPU requires about 2 ms per point multiplication
- Less powerful microprocessors (e.g, on SmartCards or cell phones) even take significantly longer (>10 ms)
- Hardware implementations
- High-performance implementations with 256-bit special primes can compute a point multiplication in a few hundred microseconds on reconfigurable hardware
- Dedicated chips for ECC can compute a
 point multiplication even in a few ten microseconds

■ Lessons Learned

- Elliptic Curve Cryptography (ECC) is based on the discrete logarithm problem. It requires, for instance, arithmetic modulo a prime.
- ECC can be used for key exchange, for digital signatures and for encryption.
- ECC provides the same level of security as RSA or discrete logarithm systems over Z_{p} with considerably shorter operands (approximately 160-256 bit vs. 1024-3072 bit), which results in shorter ciphertexts and signatures.
- In many cases ECC has performance advantages over other public-key algorithms.
- ECC is slowly gaining popularity in applications, compared to other public-key schemes, i.e., many new applications, especially on embedded platforms, make use of elliptic curve cryptography.

