COM/BLM 426 Information Security Asst. Prof. Dr. Bulent TUGRUL btugrul@eng.ankara.edu.tr

Slides are mainly based on:
Understanding Cryptography: A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl
Springer, 1st Edition, 2010

Understanding Cryptography - A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

These slides were prepared by Georg Becker, Christof Paar and Jan Pelzl

Some legal stuff (sorry): Terms of Use

- The slides can used free of charge. All copyrights for the slides remain with Christof Paar and Jan Pelzl.
- The title of the accompanying book "Understanding Cryptography" by Springer and the author's names must remain on each slide.
- If the slides are modified, appropriate credits to the book authors and the book title must remain within the slides.
- It is not permitted to reproduce parts or all of the slides in printed form whatsoever without written consent by the authors.

Content of this Chapter

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)

Content of this Chapter

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)
- Alice orders a pink car from the car salesmen Bob
- After seeing the pink car, Alice states that she has never ordered it:
- How can Bob prove towards a judge that Alice has ordered a pink car? (And that he did not fabricate the order himself)
\Rightarrow Symmetric cryptography fails because both Alice and Bob can be malicious
\Rightarrow Can be achieved with public-key cryptography
- Basic Principle of Digital Signatures

- For a given message x, a digital signature is appended to the message (just like a conventional signature).
- Only the person with the private key should be able to generate the signature.
- The signature must change for every document.
\Rightarrow The signature is realized as a function with the message x and the private key as input.
\Rightarrow The public key and the message x are the inputs to the verification function.

Content of this Chapter

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)
- Core Security Services

The objectives of a security systems are called security services.

1. Confidentiality: Information is kept secret from all but authorized parties.
2. Integrity: Ensures that a message has not been modified in transit.
3. Message Authentication: Ensures that the sender of a message is authentic. An alternative term is data origin authentication.
4. Non-repudiation: Ensures that the sender of a message can not deny the creation of the message. (c.f. order of a pink car)
5. Identification/entity authentication: Establishing and verification of the identity of an entity, e.g. a person, a computer, or a credit card.
6. Access control: Restricting access to the resources to privileged entities.
7. Availability: The electronic system is reliably available.
8. Auditing: Provides evidences about security relevant activities, e.g., by keeping logs about certain events.
9. Physical security: Providing protection against physical tampering and/or responses to physical tampering attempts
10. Anonymity: Providing protection against discovery and misuse of identity.

Content of this Chapter

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)
- Main idea of the RSA signature scheme

To generate the private and public key:

- Use the same key generation as RSA encryption.

To generate the signature:

- "encrypt" the message x with the private key

$$
s=\operatorname{sig}_{\text {Kpriv }^{\prime}}(x)=x^{d} \bmod n
$$

- Append s to message x

To verify the signature:

- "decrypt" the signature with the public key

$$
x^{\prime}=\operatorname{ver}_{\text {Kpub }}(s)=s^{e} \bmod n
$$

- If $x=x^{\prime}$, the signature is valid
- The RSA Signature Protocol

Alice

Bob
$K_{p r}=d$
$K_{\text {pub }}=(n, e)$

Compute signature: $s=\operatorname{sig}_{k_{p r}}(x) \equiv x^{d} \bmod n$

Verify signature:
$x^{〔} \equiv s^{e} \bmod n$
If $x^{\prime} \equiv x \bmod n \rightarrow$ valid signature
If $x^{`} \nexists x \bmod n \rightarrow$ invalid signature

- Security and Performance of the RSA Signature Scheme

Security:

The same constrains as RSA encryption: n needs to be at least 1024 bits to provide a security level of 80 bit.
\Rightarrow The signature, consisting of s, needs to be at least 1024 bits long

Performance:

The signing process is an exponentiation with the private key and the verification process an exponentiation with the public key e.
\Rightarrow Signature verification is very efficient as a small number can be chosen for the public key.

■ Existential Forgery Attack against RSA Digital Signature

Alice

Oscar
Bob

$$
\begin{aligned}
& K_{p r}=d \\
& K_{\text {pub }}=(n, e)
\end{aligned}
$$

1. Choose signature: $s \in Z_{n}$
2. Compute message:

$$
x \equiv s^{e} \bmod n
$$

\square

Verification:
$s^{e} \equiv x^{c} \bmod n$
since $s^{e}=\left(x^{d}\right)^{e} \equiv x \bmod n$
\rightarrow Signature is valid

Existential Forgery and Padding

- An attacker can generate valid message-signature pairs (x, s)
- But an attack can only choose the signature s and NOT the message x
\Rightarrow Attacker cannot generate messages like „Transfer \$1000 into Oscar's account"

Formatting the message x according to a padding scheme can be used to make sure that an attacker cannot generate valid (x, s) pairs.
(A messages x generated by an attacker during an Existential Forgery Attack will not coincide with the padding scheme. For more details see Chapter 10 in Understanding Cryptography.)

Content of this Chapter

- The principle of digital signatures
- Security services
- The RSA digital signature scheme
- The Digital Signature Algorithm (DSA)
- Facts about the Digital Signature Algorithm (DSA)
- Federal US Government standard for digital signatures (DSS)
- Proposed by the National Institute of Standards and Technology (NIST)
- DSA is based on the Elgamal signature scheme
- Signature is only 320 bits long
- Signature verification is slower compared to RSA
- The Digital Signature Algorithm (DSA)

Key generation of DSA:

1. Generate a prime p with $2^{1023}<p<2^{1024}$
2. Find a prime divisor q of $p-1$ with $2^{159}<q<2^{160}$
3. Find an integer α with $\operatorname{ord}(\alpha)=q$
4. Choose a random integer d with $0<d<q$
5. Compute $\beta \equiv \alpha^{d} \bmod p$

The keys are:

$$
\begin{aligned}
& k_{p u b}=(p, q, \alpha, \beta) \\
& k_{p r}=(d)
\end{aligned}
$$

- The Digital Signature Algorithm (DSA)

DSA signature generation :

Given: message x, signature s, private key d and public key (p, q, α, β)

1. Choose an integer as random ephemeral key k_{E} with $0<k_{E}<q$
2. Compute $r \equiv\left(\alpha^{k E} \bmod p\right) \bmod q$
3. Computes $\mathrm{s} \equiv(\operatorname{SHA}(x)+d \cdot r) k_{E}^{-1} \bmod q$

The signature consists of (r, s)
SHA denotes the hashfunction SHA-1 which computes a 160-bit fingerprint of message x. (See Chapter 11 of Understanding Cryptography for more details)

- The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p, q, α, β)

1. Compute auxiliary value $w \equiv s^{-1} \bmod q$
2. Compute auxiliary value $u_{1} \equiv w \cdot S H A(x) \bmod q$
3. Compute auxiliary value $u_{2} \equiv w \cdot r \bmod q$
4. Compute $v \equiv\left(\alpha^{u 1} \cdot \beta u_{2} \bmod p\right) \bmod q$

If $v \equiv r \bmod q \rightarrow$ signature is valid
If $v \neq r \bmod q \rightarrow$ signature is invalid

Proof of DSA:

We show need to show that the signature (r, s) in fact satisfied the condition $r \equiv v \bmod q$:

$$
\begin{array}{ll}
& s \equiv(\mathrm{SHA}(\mathrm{x}))+d \cdot r) \cdot k_{E}^{-1} \bmod q \\
\Leftrightarrow & k_{\mathrm{E}} \equiv s^{-1} \mathrm{SHA}(x)+d \cdot s^{-1} r \bmod q \\
\Leftrightarrow & k_{\mathrm{E}} \equiv u_{1}+d \cdot u_{2} \bmod q
\end{array}
$$

We can raise α to either side of the equation if we reduce modulo p :
$\Leftrightarrow \quad \alpha^{\mathrm{k} E} \bmod p \equiv \alpha^{\mathrm{u} 1+d \cdot \mathrm{uz}} \bmod p$
Since $\beta \equiv \alpha^{d} \bmod p$ we can write:
$\Leftrightarrow \alpha^{k E} \bmod p \equiv \alpha^{u_{1}} \beta^{u_{2}} \bmod p$
We now reduce both sides of the equation modulo q :
$\Leftrightarrow \quad\left(\alpha^{\mathrm{kE}} \bmod p\right) \bmod q \equiv\left(\alpha^{u 1} \beta^{u 2} \bmod p\right) \bmod q$
Since $r \equiv \alpha^{k E} \bmod p \bmod q$ and $v \equiv\left(\alpha^{u_{1}} \beta^{u_{2}} \bmod p\right) \bmod q$, this expression is identical to:
$\Leftrightarrow \quad r \equiv v$

■ Example

Alice

Bob

Key generation:

1. choose $p=59$ and $q=29$
2. choose $\alpha=3$
3. choose private key $d=7$
4. $\beta=\alpha^{\beta}=3^{7} \equiv 4 \bmod 59$

Sign:

Compute has of message $\mathrm{H}(x)=26$
$\longleftarrow(x,(r, s))=(x, 20,5) \quad$ 1. Choose ephermal key $k_{E}=10$

Verify:

$$
\begin{aligned}
& w \equiv 5^{-1} \equiv 6 \bmod 29 \\
& u_{1} \equiv 6 \cdot 26 \equiv 11 \bmod 29 \\
& u_{2} \equiv 6 \cdot 20 \equiv 4 \bmod 29 \\
& v=\left(3^{11} \cdot 4^{4} \bmod 59\right) \text { mod } 29=20 \\
& v \equiv r \bmod 29 \rightarrow \text { valid signature }
\end{aligned}
$$

2. $r=\left(3^{10} \bmod 59\right) \equiv 20 \bmod 29$
3. $s=(26+7 \cdot 20) \cdot 3) \equiv 5 \bmod 29$

Security of DSA

To solve the discrete logarithm problem in p the powerful index calculus method can be applied. But this method cannot be applied to the discrete logarithm problem of the subgroup q. Therefore q can be smaller than p. For details see Chapter 10 and Chapter 8 of Understanding Cryptography .

p	q	hash output $(\mathbf{m i n})$	security levels
1024	160	160	80
2048	224	224	112
3072	256	256	128

Standardized parameter bit lengths and security levels for the DSA

Elliptic Curve Digital Signature Algorithm (ECDSA)

- Based on Elliptic Curve Cryptography (ECC)
- Bit lengths in the range of 160-256 bits can be chosen to provide security equivalent to 1024-3072 bit RSA (80-128 bit symmetric security level)
- One signature consists of two points, hence the signature is twice the used bit length (i.e., 320-512 bits for 80-128 bit security level).
- The shorter bit length of ECDSA often result in shorter processing time

For more details see Section 10.5 in Understanding Cryptography

- Digital signatures provide message integrity, message authentication and nonrepudiation.
- RSA is currently the most widely used digital signature algorithm.
- Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve Digital Signature Standard (ECDSA).
- RSA verification can be done with short public keys e. Hence, in practice, RSA verification is usually faster than signing.
- DSA and ECDSA have shorter signatures than RSA
- In order to prevent certain attacks, RSA should be used with padding.
- The modulus of DSA and the RSA signature schemes should be at least 1024bits long. For true long-term security, a modulus of length 3072 bits should be chosen. In contrast, ECDSA achieves the same security levels with bit lengths in the range 160-256 bits.

