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Some legal stuff (sorry): Terms of Use

• The slides can used free of charge. All copyrights for the slides remain with  

Christof Paar and Jan Pelzl. 

• The title of the accompanying book “Understanding Cryptography” by 

Springer and the author’s names must remain on each slide.

• If the slides are modified, appropriate credits to the book authors and the 

book title must remain within the slides. 

• It is not permitted to reproduce parts or all of the slides in printed form 

whatsoever without written consent by the authors.
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Content of this Chapter

• The principle of digital signatures

• Security services

• The RSA digital signature scheme

• The Digital Signature Algorithm (DSA)
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� Motivation

• Alice orders a pink car from the car salesmen 

Bob 

• After seeing the pink car, Alice states that she 

has never ordered it:

• How can Bob prove towards a judge that Alice 

has ordered a pink car? (And that he did not 

fabricate the order himself)

⇒ Symmetric cryptography fails because both 

Alice and Bob can be malicious

⇒ Can be achieved with public-key cryptography
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� Basic Principle of Digital Signatures
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� Main idea

• For a given message x, a digital signature is 

appended to the message (just like a conventional 

signature).

• Only the person with the private key should be 

able to generate the signature.

• The signature must change for every document.

⇒The signature is realized as a function with the 

message x and the private key as input.

⇒The public key and the message x are the inputs 

to the verification function.
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� Core Security Services

1. Confidentiality : Information is kept secret from all but 

authorized parties.

2. Integrity: Ensures that a message has not been modified in 

transit.

3. Message Authentication: Ensures that the sender of a 

message is authentic. An alternative term is data origin 

authentication.

4. Non-repudiation: Ensures that the sender of a message can 

not deny the creation of the message. (c.f. order of a pink car)

The objectives of a security systems are called 
security services.
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� Additional Security Services

5. Identification/entity authentication: Establishing and 

verification of the identity of an entity, e.g. a person, a 

computer, or a credit card.

6. Access control: Restricting access to the resources to 

privileged entities.

7. Availability: The electronic system is reliably available.

8. Auditing: Provides  evidences about security relevant 

activities, e.g., by keeping logs about certain events.

9. Physical security: Providing protection against physical 

tampering and/or responses to physical tampering attempts

10. Anonymity: Providing protection against discovery and misuse 

of identity.
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Content of this Chapter
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To generate the private and public key:

• Use the same key generation as RSA encryption.

To generate the signature:

• “encrypt” the message x with the private key

• Append s to message x

To verify the signature:

• “decrypt” the signature with the public key

• If x=x’, the signature is valid

s = sigKpriv(x) = xd mod n

x’=verKpub(s)=se mod n
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� The RSA Signature Protocol

Alice Bob

Kpr = d
Kpub = (n, e)

Compute signature:
s = sigkpr

(x) ≡ xd mod n

Kpub

(x,s)

Verify signature:
x‘ ≡ se mod n
If x‘ ≡ x mod n → valid signature
If x‘ ≡ x mod n → invalid signature
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� Security and Performance of the RSA Signature Schem e

Security :

The same constrains as RSA encryption: n needs to be at 

least 1024 bits to provide a security level of 80 bit.

⇒ The signature, consisting of s, needs to be at least 1024 bits 

long

Performance:

The signing process is an exponentiation with the private key 

and the verification process an exponentiation with the public 

key e.

⇒ Signature verification is very efficient as a small number can 

be chosen for the public key.
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� Existential Forgery Attack against RSA Digital Sign ature

Alice Bob

Kpr = d
Kpub = (n, e)

1. Choose signature:
s Zn

2. Compute message:
x ≡ se mod n

(n,e)

(x,s)

Verification:
se ≡ x‘ mod n

since se = (xd)e ≡ x mod n
→ Signature is valid

Oscar

∈

(n,e)
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� Existential Forgery and Padding

• An attacker can generate valid message-signature 

pairs (x,s)

• But an attack can only choose the signature s and 

NOT the message x

⇒ Attacker cannot generate messages like „Transfer 

$1000 into Oscar‘s account“

Formatting the message x according to a padding scheme can be used to 
make sure that an attacker cannot generate valid (x,s) pairs. 

(A messages x generated by an attacker during an Existential Forgery 
Attack will not coincide with the padding scheme. For more details see 
Chapter 10 in Understanding Cryptography.)
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� Facts about the Digital Signature Algorithm (DSA)

• Federal US Government standard for digital 

signatures (DSS)

• Proposed by the National Institute of Standards 

and Technology (NIST)

• DSA is based on the Elgamal signature scheme 

• Signature is only 320 bits long

• Signature verification is slower compared to RSA
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� The Digital Signature Algorithm (DSA)

Key generation of DSA:

1. Generate a prime p with 21023 < p < 21024

2. Find a prime divisor q of p-1 with 2159 < q < 2160

3. Find an integer α with ord(α)=q

4. Choose a random integer d with 0<d<q

5. Compute β ≡ αd mod p

The keys are:

kpub = (p,q,α,β)

kpr = (d)
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� The Digital Signature Algorithm (DSA)

DSA signature generation :

Given: message x, signature s, private key d and public 

key (p,q,α,β)

1. Choose an integer as random ephemeral key kE

with 0<kE<q

2. Compute r ≡ (αkE mod p) mod q

3. Computes s ≡ (SHA(x)+d · r) kE
-1 mod q

The signature consists of (r,s)

SHA denotes the hashfunction SHA-1 which computes 

a 160-bit fingerprint of message x. (See Chapter 11 of 

Understanding Cryptography for more details)
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� The Digital Signature Algorithm (DSA)

DSA signature verification

Given: message x, signature s and public key (p,q,α,β)

1. Compute auxiliary value w ≡ s-1 mod q

2. Compute auxiliary value u1 ≡ w · SHA(x) mod q

3. Compute auxiliary value u2 ≡ w · r mod q

4. Compute v ≡ (αu1 · β u2  mod p) mod q

If v ≡ r mod q → signature is valid

If v ≡ r mod q → signature is invalid
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Proof of DSA:

We show need to show that the signature ( r,s) in fact satisfied the 

condition r ≡ v mod q:

s ≡ (SHA(x))+d ·r) · kE
-1 mod q

� kE ≡ s-1 SHA(x) + d · s-1 r mod q

� kE ≡u1+d · u2 mod q

We can raise α to either side of the equation if we reduce modulo  p:

� αkE mod p ≡ αu1+d·u2 mod p

Since β ≡ αd mod p we can write:

� αkE mod p ≡ αu1 βu2 mod p

We now reduce both sides of the equation modulo q:

� (αkE mod p) mod q ≡ (αu1 βu2 mod p) mod q

Since r ≡ αkE mod p mod q and v ≡ (αu1 βu2 mod p)  mod q, this expression is 

identical to:

� r  ≡ v 
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� Example

Alice Bob

Key generation :
1. choose p = 59 and q = 29
2. choose α = 3
3. choose private key d = 7
4. β = αβ = 37 ≡ 4 mod 59

Sign :
Compute has of message H(x)=26
1. Choose ephermal key kE=10
2. r = (310 mod 59) ≡ 20 mod 29
3. s = (26 + 7 · 20) · 3) ≡ 5 mod 29

(p, q, α, β)=(59, 29, 3, 4)

(x,(r, s))=(x,20, 5)

Verify :
w ≡ 5-1 ≡ 6 mod 29
u1 ≡ 6 · 26 ≡ 11 mod 29
u2 ≡ 6 ·  20 ≡ 4 mod 29
v = (311 · 44 mod 59) mod 29 = 20
v ≡ r mod 29 → valid signature
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� Security of DSA

To solve the discrete logarithm problem in p the powerful index 

calculus method can be applied. But this method cannot be 

applied to the discrete logarithm problem of the subgroup q. 

Therefore q can be smaller than p. For details see Chapter 10 and 

Chapter 8 of Understanding Cryptography .

p q hash output 
(min)

security levels

1024 160 160 80

2048 224 224 112

3072 256 256 128

Standardized parameter bit lengths and security levels for the DSA
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� Elliptic Curve Digital Signature Algorithm (ECDSA)

• Based on Elliptic Curve Cryptography (ECC)

• Bit lengths in the range of 160-256 bits can be chosen 

to provide security equivalent to 1024-3072 bit RSA 

(80-128 bit symmetric security level)

• One signature consists of two points, hence the 

signature is twice the used bit length (i.e., 320-512 bits 

for 80-128 bit security level).

• The shorter bit length of ECDSA often result in shorter 

processing time

For more details see Section 10.5 in Understanding 

Cryptography
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� Lessons Learned

• Digital signatures provide message integrity, message authentication and non-

repudiation.

• RSA is currently the most widely used digital signature algorithm.

• Competitors are the Digital Signature Standard (DSA) and the Elliptic Curve 

Digital Signature Standard (ECDSA).

• RSA verification can be done with short public keys e. Hence, in practice, RSA 

verification is usually faster than signing.

• DSA and ECDSA have shorter signatures than RSA

• In order to prevent certain attacks, RSA should be used with padding.

• The modulus of DSA and the RSA signature schemes should be at least 1024-

bits long. For true long-term security, a modulus of length 3072 bits should be 

chosen. In contrast, ECDSA achieves the same security levels with bit lengths in 

the range 160–256 bits.


