
COM/BLM 426
Information Security

Asst. Prof. Dr. Bulent TUGRUL
btugrul@eng.ankara.edu.tr

Slides are mainly based on:

Understanding Cryptography: A Textbook for Students and Practitioners

by Christof Paar and Jan Pelzl

Springer, 1st Edition, 2010

1

mailto:btugrul@eng.ankara.edu.tr
http://www.crypto-textbook.com/

Understanding Cryptography
by Christof Paar and Jan Pelzl

www.crypto-textbook.com

Chapter 13 – Key Establishment
ver. Jan 7, 2010

These slides were prepared by Christof Paar and Jan Pelzl

� The slides can used free of charge. All copyrights for the slides remain with

Christof Paar and Jan Pelzl.

� The title of the accompanying book “Understanding Cryptography” by Springer

and the author’s names must remain on each slide.

� If the slides are modified, appropriate credits to the book authors and the book

title must remain within the slides.

� It is not permitted to reproduce parts or all of the slides in printed form

whatsoever without written consent by the authors.

Some legal stuff (sorry): Terms of Use

2/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

3/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Classification of Key Establishment Methods

In an ideal key agreement protocol, no single party can control
what the key value will be.

4/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

It is often desirable to frequently change the key in a cryptographic system.

Reasons for key freshness include:

− If a key is exposed (e.g., through hackers), there is limited damage if the key is

changed often

− Some cryptographic attacks become more difficult if only a limited amount of

ciphertext was generated under one key

− If an attacker wants to recover long pieces of ciphertext, he has to recover several

keys which makes attacks harder

� Key Freshness

5/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Key Derivation

� In order to achieve key freshness, we need to generate new keys frequently.

� Rather than performing a full key establishment every time (which is costly in

terms of computation and/or communication), we can derive multiple session

keys kses from a given key kAB.

� The key kAB is fed into a key derivation function together with a nonce r („number

used only once“).

� Every different value for r yields a different session key

6/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Key Derivation

� The key derivation function is a computationally

simple function, e.g., a block cipher or a hash

function

Alice Bob

generate nonce r

derive session key
Kses= ekAB (r)

r

derive session key
Kses= ekAB (r)

� Example for a basic protocol:

7/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n 2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

8/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� The n2 Key Distribution Problem

� Simple situation: Network with n users. Every user wants to communicate

securely with every of the other n-1 users.

� Naïve approach: Every pair of users obtains an individual key pair

9/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� The n2 Key Distribution Problem

Shortcomings

� There are n (n-1) ≈ n2 keys in the system

� There are n (n-1)/2 key pairs

� If a new user Esther joins the network, new

keys kXE have to be transported via secure

channels (!) to each of the existing usersa

⇒ Only works for small networks which are

relatively static

Example: mid-size company with 750 employees

� 750 x 749 = 561,750 keys must be distributed securely

10/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

11/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Key Establishment with Key Distribution Center

Alice Bob

derive session key
Kses= eKA (yA)

KDC

KEK: kA KEKs: kA , kB KEK: kB

RQST (IDA ,IDB) generate session key kses

yA = eKA (kses)

yB = eKB (kses)

yA yB

derive session key
Kses= eKB (yB)

y= eKses (x) y x= e-1
Kses (y)

� Key Distribution Center (KDC) = Central party, trusted by all users

� KDC shares a key encryption key (KEK) with each user

� Principle: KDC sends session keys to users which are encrypted with KEKs

message y

12/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Key Establishment with Key Distribution Center

� Advantages over previous approach:

− Only n long-term key pairs are in the system

− If a new user is added, a secure key is only needed between the user

and the KDC (the other users are not affected)

− Scales well to moderately sized networks

� Kerberos (a popular authentication and key distribution protocol) is based on

KDCs

� More information on KDCs and Kerberos: Section 13.2 of Understanding

Cryptography

13/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Key Establishment with Key Distribution Center

Remaining problems:

� No Perfect Forward Secrecy: If the KEKs are compromised, an attacker

can decrypt past messages if he stored the corresponding ciphertext

� Single point of failure : The KDC stores all KEKs. If an attacker gets

access to this database, all past traffic can be decrypted.

� Communication bottleneck : The KDC is involved in every

communication in the entire network (can be countered by giving the

session keys a long life time)

� For more advanced attacks (e.g., key confirmation attack): Cf. Section

13.2 of Understanding Cryptography

14/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

15/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

�Recall: Diffie–Hellman Key Exchange (DHKE)

Bob

Choose random private key
kprA = a ∈ {1, 2,…, p-1}

Choose random private key
kprB = b ∈ {1, 2,…, p-1}

Compute public key
kpubA = A = αa mod p

Compute public key
kpubB = B = αb mod p

Compute common secret
kAB = Ba = (αa)b mod p

Compute common secret
kAB = Ab = (αb)a mod p

A

B

� Widely used in practice

� If the parameters are chosen carefully (especially a prime p > 21024),

the DHKE is secure against passive (i.e., listen-only) attacks

� However: If the attacker can actively intervene in the communciation,

the man-in-the-middle attack becomes possible

Public parameters α, p

16/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

�Man-in-the-Middle Attack

Bob

kprA = a

kpubA = A = αa mod p

kAO = (B´)a mod p

A

� Oscar computes a session key kAO with Alice, and kBO with Bob

� However, Alice and Bob think they are communicationg with each other !

� The attack efficiently performs 2 DH key-exchanges: Oscar-Alice and Oscar-Bob

� Here is why the attack works:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

Alice computes: kAO = (B´)a = (αo)a

Oscar computes: kAO = Ao = (αa)o

Bob computes: kBO = (A´)b = (αo)b

Oscar computes: kBO = Bo = (αa)o

17/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

�Implications of the Man-in-the-Middle Attack

Bob

kprA = a

kpubA = A = αa mod p

kAO = (B´)a mod p

A

� Oscar has no complete control over the channel, e.g., if Alice wants to send an

encrypted message x to Bob, Oscar can read the message:

kprB = b

Oscar

kpubB = B = αb mod pA´
substitute A´ = αo mod p

B´ B
substitute B´ = αo mod p

kBO = (A´)b mod pkAO = Ao mod p

kBO = Bo mod p

y = AESkA,O (x)
y

decrypt x = AES-1
kA,O (y)

re-encrypt y´= AESkB,O (x)
y´

x = AES-1
kB,O (y´)

18/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

�Very, very important facts about the Man-in-the-Mid dle Attack

� The man-in-the-middle-attack is not restricted to DHKE; it is

applicable to any public-key scheme, e.g. RSA encryptio n.

ECDSA digital signature, etc. etc.

� The attack works always by the same pattern: Oscar replaces the

public key from one of the parties by his own key.

� The attack is also known as MIM attack or Janus attack

� Q: What is the underlying problem that makes the MIM attack possible?

� A: The public keys are not authenticated: When Alice receives a public key which is

allegedly from Bob, she has no way of knowing whether it is in fact his. (After all, a key

consists of innocent bits; it does not smell like Bob‘s perfume or anything like that)

Even though public keys can be sent over unsecure channels, they

require authenticated channels.

19/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

20/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Certificates

� In order to authenticate public keys (and thus, prevent the MIM attack) , all public keys

are digitally signed by a central trusted authority.

� Such a construction is called certificate

certificate = public key + ID(user) + digital signatur e over public key and ID

� In its most basic form, a certificate for the key kpub of user Alice is:

Cert(Alice) = (kpub, ID(Alice), sigKCA(kpub,ID(Alice))

� Certificates bind the identity of user to her public key

� The trusted authority that issues the certificate is referred to as certifying authority (CA)

� „Issuing certificates“ means in particular that the CA computes the signature sigKCA(kpub)

using its (super secret!) private key kCA

� The party who receives a certificate, e.g., Bob, verifies Alice‘s public key using the public

key of the CA

21/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Alice

�Diffie–Hellman Key Exchange (DHKE) with Certificate s

Bob

verify certificate
verKpub,CA (Cert(Bob))

if verification is correct:
Compute common secret
kAB = Ba = (αa)b mod p

if verification is correct:
Compute common secret
kAB = Ab = (αb)a mod p

Cert(Alice)

kprA = a

kpubA = A

Cert(Alice) = ((A, IDA), sigKCA (A,IDA))

Cert(Bob)

kprB = b

kpubB = B = αb mod p

Cert(Bob) = ((B, IDB), sigKCA (B,IDB))

verify certificate
verKpub,CA (Cert(Alice))

CA

22/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Note that verfication requires the public key of the CA for verKpub,CA

� In principle, an attacker could run a MIM attack when kpub,CA is being distributed

⇒ The public CA keys must also be distributed via an authenticated channel!

�Certificates

� Q: So, have we gained anything?

After all, we try to protect a public key (e.g., a DH key) by using yet another

public-key scheme (digital signature for the certificate)?

� A: YES! The difference from before (e.g., DHKE without certificates) is that

we only need to distribute the public CA key once, often at the set-upt

time of the system

� Example: Most web browsers are shipped with the public keys of many

CAs. The „authenticated channel“ is formed by the (hopefully) correct

distribution of the original browser software.

23/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� Introduction

� The n2 Key Distribution Problem

� Symmetric Key Distribution

� Asymmetric Key Distribution

− Man-in-the-Middle Attack

− Certificates

− Public-Key Infrastructure

� Content of this Chapter

24/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

Definition: The entire system that is formed by CAs together with

the necessary support mechanisms is called a public -key

infrastructure (PKI).

� Public-Key Infrastructure

25/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

� In the wild certificates contain much more information than

just a public key and a signature.

� X509 is a popular signature standard. The main fields of

such a certificate are shown to the right.

� Note that the „Signature“ at the bottom is computed over all

other fields in the certifcate (after hashing of all those

fields).

� It is important to note that there are two public-key

schemes involved in every certificate:

1. The public-key that actually is protected by the signature

(„Subject‘s Public Key“ on the right). This was the public

Diffie-Hellman key in the earlier examples.

2. The digital signature algorithm used by the CA to sign the

certificate data.

� For more information on certificates, see Section 13.3 of

Understanding Cryptography

� Certificates in the Real World

26/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

There are many additional problems when certificates are to be used in systems

with a large number of participants. The more pressing ones are:

1.Users communicate which other whose certificates are issued by different CAs

− This requires cross-certification of CAs, e.g.. CA1 certifies the public-key of

CA2. If Alice trusts „her“ CA1, cross-certification ensures that she also

trusts CA2. This is called a „chain of trust“ and it is said that „trust is

delegated“.

2.Certificate Revocation Lists (CRLs)

− Another real-world problem is that certificates must be revoced, e.g., if a

smart card with certificate is lost or if a user leaves an organization. For

this, CRLs must be sent out periodically (e.g., daily) which is a burden on

the bandwidth of the system.

More information on PKIs and CAs can be found in Section 13.3 of

Understanding Cryptography

� Remaining Issues with PKIs

27/27 Chapter 13 of Understanding Cryptography by Christof Paar and Jan Pelzl

