PHY401 Electromagnetic Theory I

Energy and Momentum in Electromagnetic Waves

Assoc. Prof. Dr. Fulya Bagci Department of Physics Engineering/Ankara University fbagci@eng.ankara.edu.tr

Contents

Chapter 9. Electromagnetic Waves and Its Applications 9.2 Electromagnetic waves in vacuum

9.2.3 Energy and momentum in electromagnetic waves in vacuum

9.2.3 Energy and momentum in electromagnetic waves

The energy per unit volume stored in the electromagnetic field is

$$u = \frac{1}{2} (\varepsilon_0 E^2 + \frac{1}{\mu_0} B^2)$$

In the case of a monochromatic plane wave $B^2 = \frac{1}{c^2} E^2 = \mu_0 \varepsilon_0 E^2$
 $u = \frac{1}{2} (\varepsilon_0 E^2 + \varepsilon_0 E^2) = \varepsilon_0 E^2$

The contributions of E and B are equal.

$$u = \varepsilon_0 E^2 = \varepsilon_0 E_0^2 \cos^2(kz - \omega t + \delta)$$

As the wave travels, it carries this energy along with it.

Energy Transport and the Poynting vector

The energy flux density transported by the fields is given by the Poynting vector.

For in a time ΔT , a length $c\Delta T$ passes through area A, carrying it with an energy $uAc\Delta T$. S = Energy/(area.time)=uc

$$\vec{S} = c\varepsilon_0 E^2 \hat{z} = c\varepsilon_0 E_0^2 \cos^2(kz - \omega t + \delta)\hat{z} = uc\hat{z}$$

Electromagnetic fields not only carry energy, they also carry momentum. The momentum density stored in the fields is:

$$\vec{g} = \frac{1}{c^2}\vec{S}$$
$$\vec{g} = \frac{1}{c}\varepsilon_0 E_0^2 \cos^2(kz - \omega t + \delta)\hat{z} = \frac{1}{c}u\hat{z}$$
for monochromatic waves

In the case of *light*, the wavelength is so short (500 nm) and the period so brief ($\sim 10^{-15}$ s), that any macroscopic measurement will encompass many cycles. Typically, therefore, we're not interested in the fluctuating cosine-squared term in the energy and momentum densities; all we want is the *average* value.

The average of cosine-squared over a complete cycle is $\frac{1}{2}$.

$$< u >= \frac{1}{2} \varepsilon_0 E_0^2 \quad < S >= \frac{1}{2} c \varepsilon_0 E_0^2 \hat{z} \quad < g >= \frac{1}{2c} \varepsilon_0 E_0^2 \hat{z}$$

The average power per unit area transported by an electromagnetic wave is called the **intensity**:

$$I \equiv ~~= \frac{1}{2}c\varepsilon_0 E_0^2 = \frac{E_0^2}{2\mu_0 c}~~$$

Example

A radio station transmits a 10-kW signal at a frequency of 100 MHz. For simplicity, assume that it radiates as a point source. At a distance of 1 km from the antenna, find: (a) the amplitude of the electric and magnetic field strengths, and (b) the energy incident normally on a square plate of side 10 cm in 5 min.

Momentum and Pressure

An electromagnetic wave transports linear momentum. The linear momentum carried by an electromagnetic wave is related to the energy it transports according to

$$p = \frac{U}{c}$$

The force exerted by an electromagnetic wave on a surface can be related to the Poynting vector. The radiation pressure at normal incidence is:

$$\frac{F}{A} = \frac{\Delta p}{A\Delta t} = \frac{\Delta U}{Ac\Delta t} = \frac{SA}{Ac} = \frac{S}{c} = u$$

Examples of radiation pressure. (a) the tail of comet, (b) a 'solar sail'

http://www.phys.nthu.edu.tw/~thsc hang/notes/GP34.pdf