PHY401

 Electromagnetic Theory I

 Electromagnetic Theory I}

Propagation in Linear Media

Assoc. Prof. Dr. Fulya Bagci
Department of Physics
Engineering/Ankara University
fbagci@eng.ankara.edu.tr

Contents

Chapter 9. Electromagnetic Waves and Its Applications
9.3 Electromagnetic Waves in Matter
9.3.1 Propagation in linear media
9.3.2 Reflection and transmission in normal incidence

9.3 Electromagnetic Waves in Matter 9.3.1 Propagation in linear media

Inside matter, but in regions where there is no free charge or free current, Maxwell's equations become,

$$
\begin{array}{ll}
\text { (i) } \vec{\nabla} \cdot \vec{D}=0 & \text { (iii) } \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
\text { (ii) } \vec{\nabla} \cdot \vec{B}=0 & \text { (iv) } \vec{\nabla} \times \vec{H}=\frac{\partial \vec{D}}{\partial t}
\end{array}
$$

If the medium is linear,

$$
\vec{D}=\varepsilon \vec{E} \quad \vec{H}=\frac{1}{\mu} \vec{B}
$$

D (electric displacement field) accounts for the effects of free and bound charge within materials.

If the medium is linear and homogeneous (ε and μ do not vary from point to point),

$$
\begin{aligned}
& \text { (i) } \vec{\nabla} \cdot \vec{E}=0 \quad(i i i) \vec{\nabla} \times \vec{E}=-\frac{\partial \vec{B}}{\partial t} \\
& \text { (ii) } \vec{\nabla} \cdot \vec{B}=0 \\
& (i v) \vec{\nabla} \times \vec{B}=\varepsilon \mu \frac{\partial \vec{E}}{\partial t}
\end{aligned}
$$

Electromagnetic waves propagate through a linear homogeneous medium at a speed,

$$
\vec{\vartheta}=\frac{1}{\sqrt{\varepsilon \mu}}=\frac{c}{n}
$$

where n is the index of refraction of a substance:

$$
n \equiv \sqrt{\frac{\varepsilon \mu}{\varepsilon_{0} \mu_{0}}}
$$

μ is very close to μ_{0} in most materials so,

$$
n \cong \sqrt{\varepsilon_{r}}
$$

ε_{r} is the dielectric constant and it is always greater than 1 (since light travels more slowly through matter)

Energy Density, Poynting Vector, and Intensity in Linear Media

All of our previous results carry over, with the simple transcription $\varepsilon_{0} \rightarrow \varepsilon, \mu_{0} \rightarrow \mu$, and hence $\mathrm{c} \rightarrow \vartheta$

$$
\begin{aligned}
& u=\frac{1}{2}\left(\varepsilon E^{2}+\frac{1}{\mu} B^{2}\right) \quad \mathbf{g}=\frac{1}{v} u \hat{\mathbf{z}} \\
& \mathbf{S}=\frac{\mathbf{E} \times \mathbf{B}}{\mu} \\
& \text { What happens when a wave } \\
& \text { passes from one transparent } \\
& \text { medium into another? Exp. air to } \\
& \text { water, or glass to plastic? }
\end{aligned}
$$

In Chapter 7, you derived the electrodynamic boundary conditions as:
(i) $\varepsilon_{1} \overrightarrow{E_{1}^{\perp}}=\varepsilon_{2} \overrightarrow{E_{2}^{\perp}}$
(iii) $\overrightarrow{E_{1}^{\|}}=\overrightarrow{E_{2}^{\|}}$
(ii) $\overrightarrow{B_{1}^{\perp}}=\overrightarrow{B_{2}^{\perp}}$

$$
\text { (iv) } \frac{1}{\mu_{1}} \overrightarrow{B_{1}^{\|}}=\frac{1}{\mu_{2}} \overrightarrow{B_{2}^{\|}}
$$

These equations relate the electric and magnetic fields just to the left and just to the right of the interface between two linear media. In the following sections, we use them to deduce the laws governing reflection and refraction of electromagnetic waves.

9.3.2 Reflection and Transmission at Normal Incidence

Suppose a plane wave of frequency w, traveling in the z direction and polarized in the x direction, approaches the interface from the left.

Transmitted wave:

$$
\begin{aligned}
& \tilde{\mathbf{E}}_{T}(z, t)=\tilde{E}_{0 T} e^{i\left(k_{2} z-\omega t\right)} \hat{\mathbf{x}} \\
& \tilde{\mathbf{B}}_{T}(z, t)=\frac{1}{v_{2}} \tilde{E}_{0 T} e^{i\left(k_{2} z-\omega t\right)} \hat{\mathbf{y}}
\end{aligned}
$$

Incident wave:
$\tilde{\mathbf{E}}_{I}(z, t)=\tilde{E}_{0} e^{i\left(k_{1} z-\phi t\right)} \hat{\mathbf{x}}$
$\tilde{\mathbf{B}}_{I}(z, t)=\frac{1}{v_{1}} \tilde{E}_{0 I} e^{i\left(k_{1} z-\omega t\right)} \hat{\mathbf{y}}$

Reflected wave:

$$
\begin{aligned}
& \tilde{\mathbf{E}}_{R}(z, t)=\tilde{E}_{0 R} e^{i\left(-k_{1} z-\omega t\right)} \hat{\mathbf{x}} \\
& \tilde{\mathbf{B}}_{R}(z, t)=-\frac{1}{v_{1}} \tilde{E}_{0 R} e^{i\left(-k_{1} z-\omega t\right)} \hat{\mathbf{y}}
\end{aligned}
$$

(iii) $\overrightarrow{E_{1}^{\|}}=\overrightarrow{E_{2}^{\|}}$

$$
\widetilde{E}_{0 i}+\widetilde{E}_{0 r}=\widetilde{E}_{0 t} \quad \frac{1}{\mu_{1}}\left(\frac{1}{\vartheta_{1}} \widetilde{E}_{0 i}-\frac{1}{\vartheta_{1}} \widetilde{E}_{0 r}\right)=\frac{1}{\mu_{2}} \frac{1}{\vartheta_{2}} \widetilde{E}_{0 t}
$$

At $z=0$, the combined fields on the left must join the fields on the right in accordance with the boundary conditions. There are no components perpendicular to the surface, so
(i) and (ii) are trivial.

$$
\begin{gathered}
\text { (iv) } \frac{1}{\mu_{1}} \overrightarrow{B_{1}^{\|}}=\frac{1}{\mu_{2}} \overrightarrow{B_{2}^{\|}} \\
\frac{1}{\mu_{1}}\left(\frac{1}{\vartheta_{1}} \widetilde{E}_{0 i}-\frac{1}{\vartheta_{1}} \widetilde{E}_{0 r}\right)=\frac{1}{\mu_{2}} \frac{1}{\vartheta_{2}} \widetilde{E}_{0 t}
\end{gathered}
$$

$$
\widetilde{E}_{0 i}-\widetilde{E}_{0 r}=\beta \widetilde{E}_{0 t}
$$

where $\quad \beta=\frac{\mu_{1} \vartheta_{1}}{\mu_{2} \vartheta_{2}}=\frac{\mu_{1} n_{2}}{\mu_{2} n_{1}}$
(1) $\widetilde{E}_{0 i}^{\|}+\widetilde{E}_{0 r}^{\|}=\widetilde{E}_{0 t}^{\|}$
(2) $\widetilde{E}_{0 i}-\widetilde{E}_{0 r}=\beta \widetilde{E}_{0 t}$
$(1)+(2) \rightarrow \tilde{E}_{0 t} \quad \widetilde{E}_{0 t}=\frac{2}{1+\beta} \widetilde{E}_{0 i}$
$(1)-(2) \rightarrow \tilde{E}_{0 r}$

$$
\begin{aligned}
& \widetilde{E}_{0 r}=\frac{1-\beta}{2} \widetilde{E}_{0 t} \quad \widetilde{E}_{0 r}=\frac{1-\beta}{2} \frac{2}{1+\beta} \widetilde{E}_{0 i} \\
& \widetilde{E}_{0 r}=\frac{1-\beta}{1+\beta} \widetilde{E}_{0 i}
\end{aligned}
$$

$\beta=\frac{\vartheta_{1}}{\vartheta_{2}}$ (Permeabilities are close to the value in vacuum for most

$$
\begin{array}{ll}
\widetilde{E}_{0 t}=\left(\frac{2 \vartheta_{2}}{\vartheta_{1}+\vartheta_{2}}\right) \widetilde{E}_{0 i} & \widetilde{E}_{0 r}=\left|\frac{\vartheta_{2}-\vartheta_{1}}{\vartheta_{2}+\vartheta_{1}}\right| \widetilde{E}_{0 i} \\
\widetilde{E}_{0 t}=\left(\frac{2 n_{1}}{n_{1}+n_{2}}\right) \widetilde{E}_{0 i} & \widetilde{E}_{0 r}=\left|\frac{n_{2}-n_{1}}{n_{2}+n_{1}}\right| \widetilde{E}_{0 i}
\end{array}
$$

Doç.Dr. Fulya Bağcı

What fraction of the incident energy is reflected, and what fraction is transmitted?

The intensity (average power per unit area) is (Eq. 9.73)

$$
I=\frac{1}{2} \varepsilon \vartheta E_{0}^{2}
$$

The ratio of the reflected intensity to the incident intensity is the reflection coefficient, R.

$$
R \equiv \frac{I_{r}}{I_{i}}=\left(\frac{E_{0 r}}{E_{0 i}}\right)^{2}=\left(\frac{n_{1}-n_{2}}{n_{1}+n_{2}}\right)^{2}
$$

The ratio of the transmitted intensity to the incident intensity is the transmission coefficient, T.

$$
T \equiv \frac{I_{t}}{I_{i}}=\frac{\varepsilon_{2} \vartheta_{2}}{\varepsilon_{1} \vartheta_{1}}\left(\frac{E_{0 t}}{E_{0 i}}\right)^{2}=\frac{4 n_{1} n_{2}}{\left(n_{1}+n_{2}\right)^{2}}
$$

Notice that $R+T=1$ as conservation of energy, of course, requires. For instance, when light passes from air ($n_{1}=1$) into glass ($n_{2}=1.5$), $R=$ 0.04 and $T=0.96$. No surprise, most of the light is transmitted.

One-way mirrors (used by police to interrogate bad guys) are just partial reflectors (actually, with a very thin aluminum coating).

Doç.Dr. Fulya Bağcı

