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9.4.3 The Frequency Dependence of Permittivity

The propagation of electromagnetic waves through matter is
governed by three properties of the material: the permittivity ε,
the permeability μ and the conductivity σ.

Each of these parameters depends to some extent on the frequency
of the waves.

Dispersion:

Blue is bent more than red.

Whenever the speed of a wave depends on its frequency, the 
supporting medium is called dispersive.



Because waves of different frequency travel at different speeds
in a dispersive medium, a wave form that incorporates a range
of frequencies will change shape as it propagates. A sharply
peaked wave typically flattens out, whereas each sinusoidal
component travels at the ordinary wave (or phase) velocity,
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The packet as a whole (the "envelope") moves at the so-called 
group velocity
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Energy is carried by the group velocity.



In order to understand the nature of the group velocity, let’s consider a
race. At any given instant, the velocity of a particular runner is
different relative to others. Simply, the velocity of each individual
runner within the group is different. But, they run within a group. The
velocity at which the group of runners is moving can be considered as
the group velocity.

Group 1 Group 2



Frequency dependence of permittivity in dielectrics

The electrons in a nonconductor are bound to specific molecules.
We shall picture each electron as attached to the end of a spring.
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Any binding force can be approximated this way for sufficiently
small displacements from equilibrium, as you can see by
expanding the potential energy in a Taylor series about the
equilibrium point.
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1st term: Adjust the zero of potential energy so that U(0)=0.
2nd term: dU/dx=-F and at zero point F(0)=0
3rd term: The third term is precisely the potential energy of a spring 
with force constant

Higher terms are neglected. 
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Meanwhile, there will presumably be some damping force on the 
electron
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The driving force of the electron

E0 is the amplitude of the wave at the point z where the electron 
is situated
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In the steady state, the system oscillates at the driving frequency:
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The resulting dipole moment is the real part of

In general, differently situated electrons within a given molecule
experience different natural frequencies and damping coefficients.
Let's say there are fi electrons with frequency wj and damping γi in
each molecule. If there are N molecules per unit volume, the
polarization P is given by the real part of
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The physical polarization is the real part of complex P just as the 
physical field is the real part of complex E.

In denaminator: p is 
out of phase with E
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Relative permittivity is:

Ordinarily, the imaginary term is negligible; however, when ω is
very close to one of the resonant frequencies, ωj, it plays an
important role.



In a dispersive medium, the wave number is complex.
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The wave is attenuated (this is hardly surprising, since the damping 
absorbs energy).

2 The absorption coefficient is            , since intensity is proportional to
E2. 

Wave velocity, ϑ is ω/k and the index of refraction is, n=c/ϑ=ck/ω
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For gases, the second term is small, and we can approximate the 
square root by the first term in the binomial expansion:
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n is ordinarily a slowly increasing function of ω.



The index of refraction and absorption in the vicinity of one of the
resonances

In the immediate neighborhood of a resonance (between ω1 and
ω2), the index of refraction drops sharply -> called anomalous
dispersion

maximum absorption
(large amount of energy

is dissipated here)



n runs below 1 above the resonance, suggesting that the wave speed
exceeds c. Energy does not travel at the wave velocity, it travels at
group velocity. The phase velocity can exceed c in the
neighborhood of a resonance. (see Prob. 9.26)



If you stay away from the resonances, the damping can be ignored
(γj≈0) and the formula for the index of refraction simplifies:
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For transparent materials, the nearest significant resonances typically 
lie in the ultraviolet, so that ω< ωj. In that case,
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This is known as Cauchy's formula; the constant A is called the
coefficient of refraction, and B is called the coefficient of
dispersion. Cauchy's equation applies reasonably well to most
gases, in the optical region.



Cauchy's equation is an empirical relationship between the
refractive index and wavelength of light for a particular
transparent material. It is named for the mathematician
Augustin-Louis Cauchy, who defined it in 1836.

The most general form of Cauchy's equation is
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Cauchy's equation is only valid for regions of normal dispersion in
the visible wavelength region. In the infrared, the equation becomes
inaccurate, and it cannot represent regions of anomalous
dispersion. Despite this, its mathematical simplicity makes it useful
in some applications.

The Sellmeier equation is a later development of Cauchy's work that 
handles anomalously dispersive region: 


