## PHY401 Electromagnetic Theory I

The Frequency Dependence of Permittivity

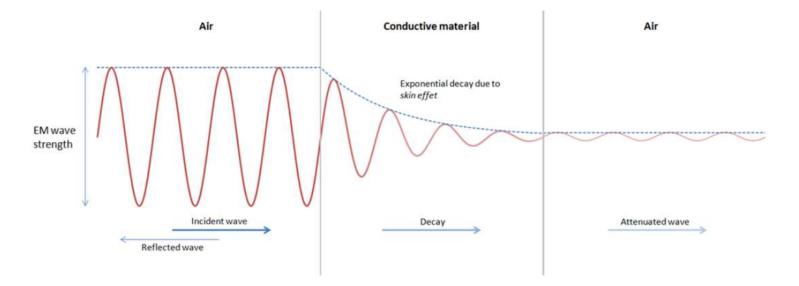
Assoc. Prof. Dr. Fulya Bagci Department of Physics Engineering/Ankara University fbagci@eng.ankara.edu.tr

## Contents

Chapter 9. Electromagnetic Waves and Its Applications

9.4 Absorption and Dispersion

9.4.3 The frequency dependence of permittivity

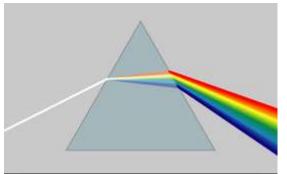


## 9.4.3 The Frequency Dependence of Permittivity

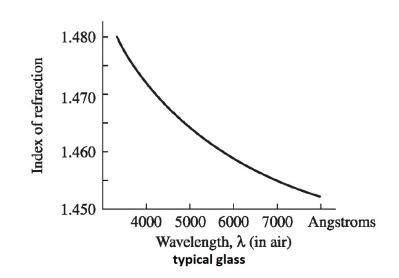
The propagation of electromagnetic waves through matter is governed by three properties of the material: the permittivity  $\varepsilon$ , the permeability  $\mu$  and the conductivity  $\sigma$ .

Each of these parameters depends to some extent on the frequency of the waves.

Dispersion:



Blue is bent more than red.

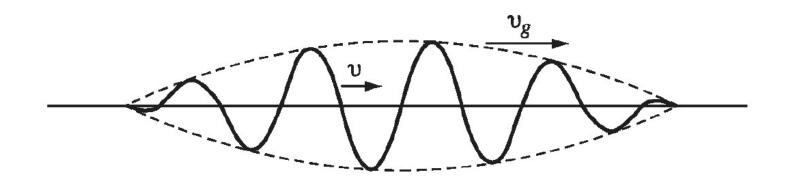


Whenever the speed of a wave depends on its frequency, the supporting medium is called **dispersive**.

Because waves of different frequency travel at different speeds in a dispersive medium, a wave form that incorporates a range of frequencies will change shape as it propagates. A sharply peaked wave typically flattens out, whereas each sinusoidal component travels at the ordinary wave (or **phase**) **velocity**,

$$\mathcal{G} = \frac{\omega}{k}$$

The packet as a whole (the "envelope") moves at the so-called **group velocity**  $\vartheta_g = \frac{d\omega}{dk}$ 



Energy is carried by the group velocity.

In order to understand the nature of the group velocity, let's consider a race. At any given instant, the velocity of a particular runner is different relative to others. Simply, the velocity of each individual runner within the group is different. But, they run within a group. The velocity at which the group of runners is moving can be considered as the *group velocity*.



## Frequency dependence of permittivity in dielectrics

The electrons in a nonconductor are bound to specific molecules. We shall picture each electron as attached to the end of a spring.

$$F_{binding} = -k_{spring}x = -m\omega_0^2 x$$

*Any* binding force can be approximated this way for sufficiently small displacements from equilibrium, as you can see by expanding the potential energy in a Taylor series about the equilibrium point.

$$U(x) = U(0) + xU'(0) + \frac{1}{2}x^2U''(0) + \dots$$

1st term: Adjust the zero of potential energy so that U(0)=0. 2nd term: dU/dx=-F and at zero point F(0)=03rd term: The third term is precisely the potential energy of a spring with force constant

Higher terms are neglected.

$$k_{spring} = \frac{d^2 U}{dx^2} \bigg|_{x=0}$$

Meanwhile, there will presumably be some damping force on the electron

$$F_{damping} = -m\gamma \frac{dx}{dt}$$

The driving force of the electron  $F_{\text{driving}} = qE = qE_0 \cos(\omega t)$ 

 $E_0$  is the amplitude of the wave at the point z where the electron is situated

$$m\frac{d^{2}x}{dt^{2}} = F_{binding} + F_{damping} + F_{driving}$$
$$m\frac{d^{2}x}{dt^{2}} + m\gamma\frac{dx}{dt} + m\omega_{0}^{2}x = qE_{0}\cos(\omega t)$$

$$\frac{d^2 \tilde{x}}{dt^2} + \gamma \frac{d \tilde{x}}{dt} + \omega_0^2 \tilde{x} = \frac{q}{m} E_0 e^{-i\omega t}$$

In the steady state, the system oscillates at the driving frequency:

$$\widetilde{x}(t) = \widetilde{x}_0 e^{-i\omega t}$$

$$\widetilde{x}(t)'' = -\omega^2 \widetilde{x}_0 e^{-i\omega t}$$

$$\widetilde{x}(t)' = -i\omega \widetilde{x}_0 e^{-i\omega t}$$

$$-\omega^2 \widetilde{x}_0 - i\omega \gamma \widetilde{x}_0 + \omega_0^2 \widetilde{x}_0 = \frac{q}{m} E_0$$

$$\widetilde{x}_0 (-\omega^2 - i\gamma \omega + \omega_0^2) = \frac{q}{m} E_0$$

$$\widetilde{x}_0 = \frac{q/m}{-\omega^2 - i\gamma \omega + \omega_0^2} E_0$$

The resulting dipole moment is the real part of

$$\widetilde{p}(t) = q\widetilde{x}(t) = \frac{q^2 / m}{\omega_0^2 - \omega^2 - i\gamma\omega} E_0 e^{-i\omega t}$$

In denaminator: *p* is out of phase with *E* 

In general, differently situated electrons within a given molecule experience different natural frequencies and damping coefficients. Let's say there are  $f_i$  electrons with frequency  $w_j$  and damping  $\gamma_i$  in each molecule. If there are N molecules per unit volume, the polarization P is given by the real part of

$$\widetilde{P} = \frac{Nq^2}{m} \left( \sum_{j} \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \right) \widetilde{E}$$
$$\widetilde{P} = \varepsilon_0 \widetilde{\chi}_E \widetilde{E}$$

The physical polarization is the real part of complex P just as the physical field is the real part of complex E.

$$\widetilde{D} = \widetilde{\varepsilon}\widetilde{E}$$

$$\widetilde{P} = \varepsilon_0 \widetilde{\chi}_E \widetilde{E}$$

$$\widetilde{P} = \frac{Nq^2}{m} \left( \sum_{j} \frac{f_j}{\omega_j^2 - \omega^2 - i\gamma_j \omega} \right) \widetilde{E}$$

$$\widetilde{\chi}_{E} = \frac{Nq^{2}}{m\varepsilon_{0}} \left( \sum_{j} \frac{f_{j}}{\omega_{j}^{2} - \omega^{2} - i\gamma_{j}\omega} \right)$$

$$\tilde{\varepsilon} = \varepsilon_0 (1 + \tilde{\chi}_E)$$

Relative permittivity is:

$$\tilde{\varepsilon}_{r} = \frac{\tilde{\varepsilon}}{\varepsilon_{0}} = 1 + \tilde{\chi}_{E} = 1 + \frac{Nq^{2}}{m\varepsilon_{0}} \left( \sum_{j} \frac{f_{j}}{\omega_{j}^{2} - \omega^{2} - i\gamma_{j}\omega} \right)$$

Ordinarily, the imaginary term is negligible; however, when  $\omega$  is very close to one of the resonant frequencies,  $\omega_j$ , it plays an important role. Doç.Dr. Fulya Bağcı In a dispersive medium, the wave number is complex.

$$\widetilde{k} = \sqrt{\widetilde{\varepsilon}\mu_0}\omega$$
$$\widetilde{k} = k + i\kappa$$
$$\widetilde{E}(z,t) = \widetilde{E}_0 e^{-\kappa z} e^{i(kz - \omega t)}$$

The wave is *attenuated* (this is hardly surprising, since the damping absorbs energy).

The absorption coefficient is  $\alpha \equiv 2\kappa$ , since intensity is proportional to  $E^2$ .

Wave velocity,  $\vartheta$  is  $\omega/k$  and the index of refraction is,  $n=c/\vartheta=ck/\omega$ 

$$\tilde{k} = \frac{\omega}{c} \sqrt{\tilde{\varepsilon}_r}$$

$$\tilde{\varepsilon}_{r} = \frac{\tilde{\varepsilon}}{\varepsilon_{0}} = 1 + \tilde{\chi}_{E} = 1 + \frac{Nq^{2}}{m\varepsilon_{0}} \left( \sum_{j} \frac{f_{j}}{\omega_{j}^{2} - \omega^{2} - i\gamma_{j}\omega} \right)$$

For gases, the second term is small, and we can approximate the square root by the first term in the binomial expansion:

$$\sqrt{\tilde{\varepsilon}_{r}} = \sqrt{1 + \tilde{\chi}_{E}} = 1 + \frac{1}{2} \tilde{\chi}_{E}$$

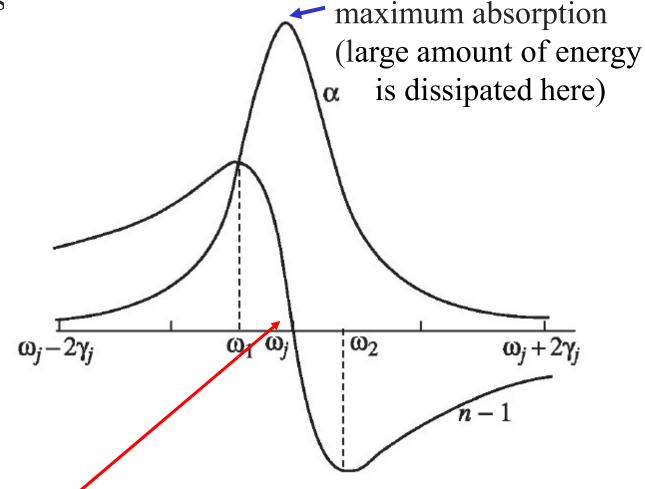
$$\tilde{k} = \frac{\omega}{c} \sqrt{\tilde{\varepsilon}_{r}} = \frac{\omega}{c} \left[ 1 + \frac{Nq^{2}}{2m\varepsilon_{0}} \left( \sum_{j} \frac{q^{2}/m}{\omega_{j}^{2} - \omega^{2} - i\gamma_{j}\omega} \right) \right]$$

$$n = \frac{ck}{\omega} \approx 1 + \frac{Nq^{2}}{2m\varepsilon_{0}} \left( \sum_{j} \frac{f_{j}(\omega_{j}^{2} - \omega^{2})}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2}\omega^{2}} \right)$$

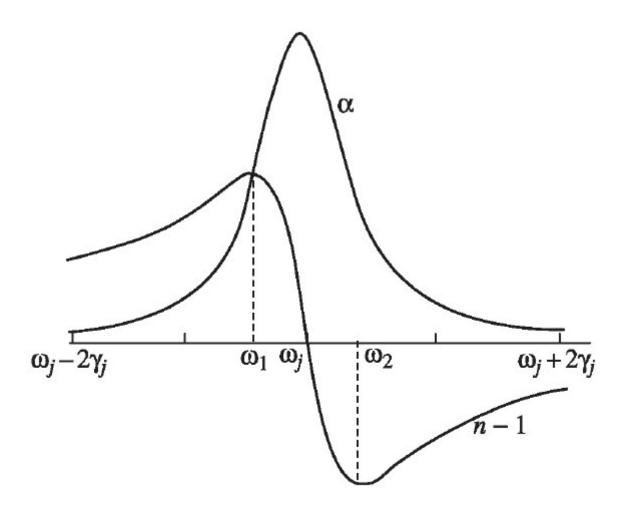
$$\alpha = 2\kappa \approx \frac{Nq^{2}\omega^{2}}{m\varepsilon_{0}c} \sum_{j} \frac{f_{j}\gamma_{j}}{(\omega_{j}^{2} - \omega^{2})^{2} + \gamma_{j}^{2}\omega^{2}}$$

*n* is ordinarily a slowly increasing function of  $\omega$ .

The index of refraction and absorption in the vicinity of one of the resonances



In the immediate neighborhood of a resonance (between  $\omega_1$  and  $\omega_2$ ), the index of refraction drops sharply -> called anomalous Doç.Dr. Fulya Bağcı



*n* runs below 1 above the resonance, suggesting that the wave speed exceeds c. Energy does not travel at the wave velocity, it travels at group velocity. The phase velocity can exceed c in the neighborhood of a resonance. (see Prob. 9.26)

If you stay away from the resonances, the damping can be ignored  $(\gamma_i \approx 0)$  and the formula for the index of refraction simplifies:

$$n = \frac{ck}{\omega} \approx 1 + \frac{Nq^2}{2m\varepsilon_0} \left( \sum_j \frac{f_j(\omega_j^2 - \omega^2)}{(\omega_j^2 - \omega^2)^2 + \gamma_j^2 \omega^2} \right) \longrightarrow n = 1 + \frac{Nq^2}{2m\varepsilon_0} \left( \sum_j \frac{f_j}{\omega_j^2 - \omega^2} \right)$$

For transparent materials, the nearest significant resonances typically lie in the ultraviolet, so that  $\omega < \omega_i$ . In that case,

$$\frac{1}{\omega_j^2 - \omega^2} = \frac{1}{\omega_j^2} \left( 1 - \frac{\omega^2}{\omega_j^2} \right)^{-1} \cong \frac{1}{\omega_j^2} \left( 1 + \frac{\omega^2}{\omega_j^2} \right)^{-1}$$
$$n = 1 + \frac{Nq^2}{2m\varepsilon_0} \left( \sum_j f_j \frac{1}{\omega_j^2} \left( 1 + \frac{\omega^2}{\omega_j^2} \right) \right)$$

$$n = 1 + \left(\frac{Nq^2}{2m\varepsilon_0}\sum_j \frac{f_j}{\omega_j^2}\right) + \omega^2 \left(\frac{Nq^2}{2m\varepsilon_0}\sum_j \frac{f_j}{\omega_j^4}\right)$$

$$n = 1 + \left(\frac{Nq^2}{2m\varepsilon_0}\sum_j \frac{f_j}{\omega_j^2}\right) + \omega^2 \left(\frac{Nq^2}{2m\varepsilon_0}\sum_j \frac{f_j}{\omega_j^4}\right)$$

In terms of wavelength in vacuum which is  $\lambda = \frac{2\pi c}{c}$ 

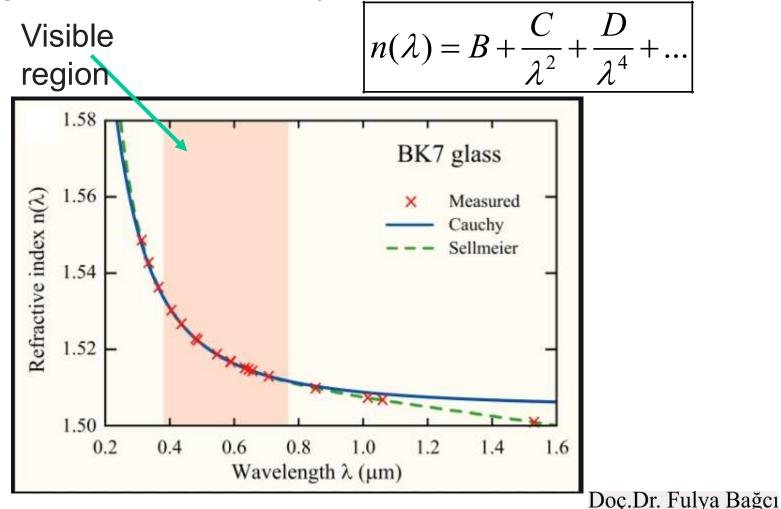
$$A = \left(\frac{Nq^2}{2m\varepsilon_0}\sum_j \frac{f_j}{\omega_j^2}\right)$$

$$n = 1 + A + \frac{AB}{\lambda^2} \longrightarrow \left[n = 1 + A\left(1 + \frac{B}{\lambda^2}\right)\right]$$

This is known as Cauchy's formula; the constant A is called the coefficient of refraction, and B is called the coefficient of dispersion. Cauchy's equation applies reasonably well to most gases, in the optical region.

**Cauchy's equation** is an empirical relationship between the refractive index and wavelength of light for a particular transparent material. It is named for the mathematician Augustin-Louis **Cauchy**, who defined it in 1836.

The most general form of Cauchy's equation is



**Cauchy's equation** is only valid for regions of normal dispersion in the visible wavelength region. In the infrared, the equation becomes inaccurate, and **it cannot represent regions of anomalous dispersion**. Despite this, its <u>mathematical simplicity makes it useful</u> in some applications.

The Sellmeier equation is a later development of Cauchy's work that handles anomalously dispersive region:

The usual form of the equation for glasses is

$$n^2(\lambda)=1+rac{B_1\lambda^2}{\lambda^2-C_1}+rac{B_2\lambda^2}{\lambda^2-C_2}+rac{B_3\lambda^2}{\lambda^2-C_3},$$

where *n* is the refractive index,  $\lambda$  is the wavelength, and  $B_{1,2,3}$  and  $C_{1,2,3}$  are experimentally determined *Sellmeier coefficients*. These coefficients are usually quoted for  $\lambda$  in micrometres.