PHY401 Electromagnetic Theory I

Scalar and Vector Potentials and Gauge Transformations, Coulomb and Lorenz Gauge

Assoc. Prof. Dr. Fulya Bagci Department of Physics Engineering/Ankara University fbagci@eng.ankara.edu.tr

Contents

Chapter 10. POTENTIALS AND FIELDS 10.1 The Potential Formulation 10.1.1 Scalar and Vector Potentials 10.1.2 Gauge Transformations 10.1.3 Coulomb Gauge and Lorenz Gauge

Static

$$\vec{E} = -\nabla V$$

 $\vec{E} = -\nabla V - \vec{E} \vec{A}$
 $\vec{B} = \nabla x \vec{A}$
 $\vec{B} = \nabla x \vec{A}$
 $\vec{B} = \nabla x \vec{A}$

10.1.1 Scalar and Vector Potentials

Given $\rho(r,t)$ and J(r,t), what are the fields E(r,t) and B(r,t)? In the static case -> Coulomb's law and the Biot-Savart law In the dynamic case? -> ?

The fields have to be represented in terms of potentials.

i)
$$\nabla \cdot \boldsymbol{E} = \frac{\rho}{\varepsilon_0}$$
 iii) $\nabla \times \boldsymbol{E} = 0$
ii) $\nabla \cdot \boldsymbol{B} = \overset{\rho}{0}$ *iv*) $\nabla \times \boldsymbol{B} = \mu_0 \boldsymbol{J}$

In electrostatics, $\vec{\nabla} \times \vec{E} = 0 \rightarrow \vec{E} = -\nabla V \quad \vec{\nabla} \vec{B} = 0 \rightarrow \vec{B} = \vec{\nabla} \times \vec{A}$

In electrodynamics $\vec{\nabla} \times \vec{E} \neq 0$ $\vec{\nabla} \vec{B} = 0 \rightarrow \vec{B} = \vec{\nabla} \times \vec{A}$

$$\vec{\nabla} \times \vec{E} = -\frac{\partial}{\partial t} \left(\vec{\nabla} \times \vec{A} \right)$$
$$\vec{\nabla} \times \left(\vec{E} + \frac{\partial \vec{A}}{\partial t} \right) = 0$$
$$\vec{E} + \frac{\partial \vec{A}}{\partial t} = -\nabla V \longrightarrow \vec{E} = -\nabla V - \frac{\partial \vec{A}}{\partial t}$$

This function **A** is given the name "**vector potential**"

Example 10.1. Find the charge and current distributions that would give rise to the potentials

$$V = 0, \mathbf{A} = \begin{cases} \frac{\mu_0 k}{4c} (ct - |x|)^2 \hat{\mathbf{z}} & \text{for } |x| < ct \\ 0 & \text{for } |x| > ct \end{cases}$$

Solution: Solution: $\vec{E} = -\frac{\partial \vec{A}}{\partial t} = -\frac{\mu_0 k}{2} (ct - |x|) \hat{z}$ $\vec{\nabla} \vec{E} = 0 \rightarrow \rho = 0$ $\vec{\nabla} \times \vec{E} = \begin{vmatrix} \hat{x} & \hat{y} & \hat{z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ \frac{\partial}{\partial x} & \frac{\partial}{\partial y} & \frac{\partial}{\partial z} \\ 0 & 0 & \frac{\mu_0 k}{4c} (ct - |x|)^2 \end{vmatrix}$ $= \mp \frac{\mu_0 k}{2} \hat{y}$ $\vec{B} = (\pm \frac{\mu_0 k}{2c} (ct - |x|)) \hat{y}$ $\vec{\nabla} \vec{B} = 0$ Notice that **B** has a discontinuity at Notice that **B** has a discontinuity at x = 0.

$$\mu_{0} \left(\begin{array}{c} & 1 & 0 & 0 & \partial t^{2} \end{array} \right) \quad \mu_{0} \quad (\mathbf{v} + \mathbf{v}) = \mathbf{v} \\ \nabla \cdot \mathbf{A} = \frac{\partial A_{x}}{\partial x} + \frac{\partial A_{y}}{\partial y} + \frac{\partial A_{z}}{\partial z} = 0 \\ \nabla^{2} \mathbf{A} = \left(\frac{\partial^{2}}{\partial x^{2}} + \frac{\partial^{2}}{\partial y^{2}} + \frac{\partial^{2}}{\partial z^{2}} \right) A_{z} \hat{\mathbf{z}} = \frac{\mu_{0} k}{4c} \hat{\mathbf{z}} \qquad \mathbf{J} = 0 \\ -\mu_{0} \varepsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \varepsilon_{0} \frac{\mu_{0} k}{4c} c^{2} \hat{\mathbf{z}} = \frac{\mu_{0} k}{4c} \hat{\mathbf{z}}$$

Since the volume charge density and current density are both zero, where are the electric and magnetic fields from?

Remember the boundary condition (iv) in Eq. 7.64

$$\frac{1}{\mu_1} \mathbf{B}_1^{\parallel} - \frac{1}{\mu_2} \mathbf{B}_2^{\parallel} = \mathbf{K}_f \times \mathbf{\hat{n}}$$

$$kt\hat{y} = \vec{K} \times \hat{x}$$
$$\vec{K} = kt\hat{z}$$

We have here a uniform surface current flowing in the z direction
over the plane
$$x = 0$$
. Notice that the news travels out (in both
directions) at the speed of light: for points $|x| > ct$ the message
("current is now flowing") has not yet arrived, so the fields are zero.

$$\int x = 0$$

10.2 Gauge Transformations

We are free to impose extra conditions on V and A, when nothing happens to **E and B.** Let's work out precisely what this **gauge freedom** entails.

$$A' = A + \alpha \qquad V = V' + \beta$$

Since two A's give the same **B**, their curls must be equal, and hence,

$$\nabla \times \alpha = 0 \rightarrow \alpha = \nabla \lambda$$

The two potentials also give the same **E**, so

$$\nabla \cdot \beta + \frac{\partial \alpha}{\partial t} = 0 \quad \nabla \cdot \left(\beta + \frac{\partial \lambda}{\partial t}\right) = 0 \quad \bullet \quad \beta = -\frac{\partial \lambda}{\partial t} + k(t)$$

We might as well absorb k(t) into A.

$$A' = A + \nabla \lambda \qquad V' = V - \frac{\partial \lambda}{\partial t}$$

Such changes in V and A are called gauge transformations. They can be exploited to adjust the divergence of A.

10.1.3 Coulomb Gauge and Lorenz Gauge

The Coulomb Gauge: In the Coulomb gauge, we pick
$$\nabla \cdot \mathbf{A} = \mathbf{0}$$

 $\nabla^2 V + \frac{\partial}{\partial t} (\nabla \cdot \mathbf{A}) = -\frac{1}{\epsilon_0} \rho$ $\nabla \cdot \mathbf{A} = \mathbf{0}$
 $\nabla^2 V = -\frac{1}{\epsilon_0} \rho$

This is Poisson's equation, and we already know how to solve it: setting V = 0 at infinity.

$$V(\mathbf{r},t) = \frac{1}{4\pi\varepsilon_0} \int \frac{\rho(\mathbf{r}',t)}{\mathbf{r}} d\tau' \text{ (setting } V=0 \text{ at infinity)}$$

$$\left(\nabla^{2} \mathbf{A} - \mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} \right) - \nabla \left(\nabla \cdot \mathbf{A} + \mu_{0} \epsilon_{0} \frac{\partial V}{\partial t} \right) = -\mu_{0} \mathbf{J} \nabla \cdot \mathbf{A} = \mathbf{0} \qquad \nabla^{2} \mathbf{A} - \mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \mathbf{J} + \mu_{0} \epsilon_{0} \nabla \left(\frac{\partial V}{\partial t} \right)$$
The Lorentz Gauge: In the Lorenz gauge, we pick $\nabla \cdot \mathbf{A} = -\mu_{0} \epsilon_{0} \frac{\partial V}{\partial t}$
With this, $\nabla^{2} \mathbf{A} - \mu_{0} \epsilon_{0} \frac{\partial^{2} \mathbf{A}}{\partial t^{2}} = -\mu_{0} \mathbf{J}$
Meanwhile, the differential equation for *V* becomes $\nabla^{2} V - \mu_{0} \epsilon_{0} \frac{\partial^{2} V}{\partial t^{2}} = -\frac{1}{\epsilon_{0}} \rho$
Lorenz gauge treats *V* and A with the same differential operator called the
d'Alembertian. In the Lorenz gauge, *V* and A satisfy the **inhomogeneous wave**
equation, with a "source" term on the right.
 $\nabla^{2} - \mu_{0} \epsilon_{0} \frac{\partial^{2}}{\partial t^{2}} \equiv \Box^{2}$
Doc.Dr. Fulya Bağcı

This choice of Coulomb gauge is mostly appropriate for the study of radiation problems and allow us to write down the Poisson's equation for the scalar potential.

For a covariant treatment of the electrodynamics the Lorentz gauge choice is preferred. Then the uncoupled differential equations turn out to be inhomogenous wave equations. Using d'Alembertian operator (denoted by \Box), the differential equations for the potentials become simpler.

When you get to dynamics, you'll see that potentials are much easier to work with than fields.