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Chapter 10. POTENTIALS AND FIELDS
10.1 The Potential Formulation



10.1.1 Scalar and Vector Potentials
Given ρ(r,t) and J(r,t), what are the fields E(r,t) and B(r,t)?
In the static case -> Coulomb's law and the Biot-Savart law
In the dynamic case? -> ?
The fields have to be represented in terms of potentials.
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This function A is given the 
name "vector potential"



Example 10.1. Find the charge and current distributions that would 
give rise to the potentials

Solution:
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Notice that B has a discontinuity at x = 0.



Since the volume charge density and current density are both zero, 
where are the electric and magnetic fields from?



Remember the boundary condition (iv) in Eq. 7.64

 kt y K x 


K kt z
 

We have here a uniform surface current flowing in the z direction
over the plane x = 0. Notice that the news travels out (in both
directions) at the speed of light: for points |x| > ct the message
("current is now flowing") has not yet arrived, so the fields are zero.

x = 0



10.2 Gauge Transformations

We are free to impose extra conditions on V and A, when nothing happens to
E and B. Let's work out precisely what this gauge freedom entails.

Since two A's give the same B, their curls must be equal, and hence,

The two potentials also give the same E, so

We might as well absorb k(t) into A.
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Such changes in V and A are called gauge transformations.
They can be exploited to adjust the divergence of A.



10.1.3 Coulomb Gauge and Lorenz Gauge

This is Poisson's equation, and we already know how to solve it: setting V = 0 at
infinity.

The Coulomb Gauge: In the Coulomb gauge, we pick

The Lorentz Gauge: In the Lorenz gauge, we pick

With this,

Meanwhile, the differential equation for V becomes

Lorenz gauge treats V and A with the same differential operator called the
d'Alembertian. In the Lorenz gauge, V and A satisfy the inhomogeneous wave 
equation, with a "source" term on the right.



This choice of Coulomb gauge is mostly appropriate for the study of
radiation problems and allow us to write down the Poisson’s equation
for the scalar potential.

For a covariant treatment of the electrodynamics the Lorentz gauge
choice is preferred. Then the uncoupled differential equations turn out
to be inhomogenous wave equations. Using d’Alembertian operator
(denoted by ), the differential equations for the potentials become
simpler.

When you get to dynamics, you'll see that potentials are much easier to
work with than fields.


