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10.2.1 Retarded Potentials

With the familiar solutions,

In the nonstatic case, it is not the status of the
source right now that matters, but rather its
condition at some earlier time tr when the

“message” left.

Eq.(10.24)



The natural generalization of Eq. 10.24 for nonstatic sources is
therefore: Because the integrands are evaluated at the retarded time,
these are called retarded potentials.

Argument: The light we see now left each star at the retarded time
corresponding to that star's distance from the earth.
Let’s prove that these equations satisfy the inhomogeneous wave
equation.
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The retarded time:



Retarded Scalar Potential Satisfies the Lorenz Gauge Condition

Proof:
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Using quotient rule:
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The retarded scalar potential satisfies the inhomogeneous wave
equation under Lorenz gauge condition.



Retarded Vector Potential Satisfies the Lorenz Gauge
Condition

Show that the retarded vector potential satisfies the Lorenz gauge 
condition.
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Solution:
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Using quotient rule:

Solve Problem 10.8.



Example 10.2 An infinite straight wire carries the current

Find the resulting electric and magnetic fields.

Solution: The wire is electrically neutral, so the scalar potential is zero. 

 
r

-∞

∞

For t < s/c, the "news" has not yet reached P, and the potential is zero. 
For t > s/c, only the segment contributes.
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Notice that as t→∞ we recover the static case: E = 0, 0 0
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10.2.2 Jefimenko’s Equations
Given the retarded potentials,
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in principle, the fields can be determined:

The integrands depend on r both explicitly, through r
in the denominator, and implicitly, through the retarded 
time tr = t-r/c in the argument of the numerator.
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(as calculated before)
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Putting them together (and using c2=1/(μ0ε0)):

This is the time-dependent generalization of Coulomb's law.
In the static case, the second and third terms drop out and the first 
term loses its dependence on tr.

As for B, the curl of A contains two terms:
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so

Meanwhile , and hence

This is the time-dependent generalization of the Biot-Savart law.

The earliest explicit statement of E(r,t) and B(r,t) solutions to
Maxwell's equations was in 1966 by Oleg Jefimenko.

In practice Jefimenko's equations are of limited utility, since it is
typically easier to calculate the retarded potentials and differentiate
them, rather than going directly to the fields. Nevertheless, they
provide a satisfying sense of closure to the theory.
To get to the retarded potentials, all you do is replace t by tr in the
electrostatic and magnetostatic formulas, but in the case of the fields
completely new terms (involving derivatives of ρ and J) appear.


