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10.3.1 Lienard-Wiechert Potentials

Let us calculate the retarded potentials for a point charge that 1s
moving on a specified trajectory.

w(t) = position of g at time £

The retarded time 1s ¢, p T o)
" C

e=1 — w(t,)

Only one point contributes to the potentials at any particular time ¢.

Otherwise would violate the special relativity. (Details can be found
in Griffiths, 4th ed., page 453 and 454.)
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V(r,t)=

1 qc

41E) XC—"%Y

Eq. 10.46

where U 1s the velocity of the charge at the retarded time, and « 1s the
vector from the retarded position to the field point r.

Moreover, since the current density is pd, the vector potential is:
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Eq. 10.47

Eq. 10.46 and Eq. 10.47 are the famous Lienard-Wiechert

potentials for a moving point charge.

Example problem 10.3: Find the potentials of a point charge
moving with constant velocity.



10.3.2 The Fields of a Moving
Charge

Using the Lienard-Wiechert potentials we can calculate the
fields of a moving point charge, E and B.

Calculation of E and B

E= —VV—Qé
ot

Y =L V(xc — 29)

41E (zc—tﬁ)z

Since «==c(t- t,.), then Ve=-cV't,.



V(d)=(2V)9 + 9(Ve) + =« X (V X 9)+ 9 X(V X «)

IV ()= OV)r — (IV)w

0 d 0 A~ A~ A
OV)r = (ﬁxa+ﬁy5+ 9,5) (X +yP + 22)

=0, R+ 9, § + 0, =0



(9V)w =9Vt )
VG = axVi
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VX %=9xVt

r

Via-v)=a@B - Vi,)+v—v(v- Vi) —ax(ax Vi) + v x (vx Vi)

—v+(2-a—vH)Vy,

1
vy =2

. s . .
T dweg (ac — 2 - V)2 [T+{C e a}‘ﬂr]

To complete the calculation, we need to know I't,..
1

2% %

— %[(4-?)4+¢ X (V x4)]

Vr-2)



tr:'cc—'cﬁ
PV = = = [9 + (c? — 9% + =a)Vt, ]
4rey (ec — =9)? ’
VvV = 4220 e w)g [(x¢c — «9)9 — (c? — 92 + «a)«]

With a similar calculation,

A 1 gc
t  4Ameg (ac — 2 - V)3

[(»n: — A V)(—v+2a/c) + E(f:2 —vi+a. a)v]
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Introducing the vectoru, u=c4—YV

q 2
4eg (- )3

E(, 1) = [(c2 —v)u+2 x (u x a)]

1
B(r, ) = —£ x E(r, 1).
C

* If $ and a are both zero, E(r,f) reduces to the old electrostatic result.

* The first term 1n E falls off as the inverse square of distance from

the particle. For this reason, it 1s sometimes called the generalized
Coulomb field.

* The second term falls of as the inverse first power of « and is therefore
dominant at large distances. It is this term that is responsible for
electromagnetic radiation. Accordingly, it is called the radiation field.

* The magnetic field of a point charge 1s always perpendicular to the
electric field, and to the vector from the retarded point.



The electric and magnetic fields of a point charge moving
with constant velocity are shown in the Figure 10.10 and 10.11,

respectively.
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The field of a fast-moving charge is flattened out like a
pancake 1n the direction perpendicular to the motion because of
the sin“@ in the denominator.

In the forward and backward directions E is reduced by a
factor (1 — 92%/c?) relative to the field of a charge at rest.

In the perpendicular direction E 1s enhanced by a factor
1V1 —92/c2.

Lines of B circle around the charge.

When 9%/c? <<1, the equations reduce to the Coulomb's law and
the Biot-Savart law for an electric and magnetic field of a point
charge, respectively.



