)
THE NAME OF THE EXPERIMENT N	MERCURY(II) ACETATE
FORMULA H	$Hg(CH_3COO)_2$

EXPERIMENTAL PROCEDURE

5 g of sodium chloride is dissolved in 30 mL of hot water. 5 g of mercury(II) chloride is added to this solution. 50 mL of 5% NaOH is dropped slowly onto the hot solution. The yellow precipitated mercury(II) oxide (HgO) is filtered and washed with hot water. The precipitate is dissolved in a beaker by treatment with 5 mL of hot concentrated acetic acid. Then, the solution is left to crystallize. After the crystals are filtered, they are washed with chloroform and dried in the air.

QUESTIONS

- *1.* Write the electronic formula of the compound.
- 2. Why is NaCl used in the experiment?
- 3. Write and balance the chemical equation.

Working rate: 1/5

EXPERIMENT NUMBER	4
THE NAME OF THE EXPERIMENT	MANGANESE(III) ACETATE
FORMULA	$Mn(CH_3COO)_3$. $2H_2O$

REACTION EQUATION

 $4Mn(CH_3COO)_2.4H_2O + KMnO_4 + 8CH_3COOH \rightarrow 5Mn(CH_3COO)_3. 2H_2O + CH_3COOK + 10H_2O$

EXPERIMENTAL PROCEDURE

19.6 g (80 mmole) of $Mn(CH_3COO)_2.4H_2O$ is dissolved in 200 mL of acetic acid by heating., 3.1 g (20 mmole) of KMnO4 is slowly added to this solution using the tip of the spatula (by the way, it is necessary to be careful since the reaction is severe). After the added KMnO₄ is completely dissolved, 3mL of water is put into the solution and left to crystallize. If there is no crystallization after one day, the edge of the beaker is itched with a glass stir rod. The crystals formed are recrystallized from acetic acid. Excess water in crystallization should be avoided.

QUESTIONS

- **1.** Write the electron configuration of Mn and Mn(III).
- 2. Why is the experiment carried out in an acetic acid medium?
- 3. What is the reason for not adding too much water for crystallization?
- 4. Write the decomposition reaction of Mn(III) ion in water.

Working rate: 1/6

GENERAL INFORMATION

Nomenclature of Inorganic Compounds

Negative ligands	
F	Fluoro
Cl	Chloro
Br	Bromo
Г	Iodo
O^{2}	Oxo
O_2^{2-}	Peroxo
S^{2-}	Thio
SH	Mercapto
Н	Hydrido
OH	Hydroxo
CH_3COO^-	Acetato
NH ₂ ⁻	Amido
NH ²⁻	İmido
N^{3-}	Azido
NO ₃ ⁻	Nitrato
NO ₂	Nitro
ONO	Nitrito
SO_4^{2-}	Sulfato
ClO_3^-	Chlorato
ClO_2^-	Chlorito
$H_2NCH_2COO^-$	Glisinato
SO_3^{2-}	Sulfito
$S_2 O_3^{2-}$	Thiyosulfato
CN	Cyano
NC-	İsocyano
SCN	İsothiocyanato
CO_3^{2-}	Carbonato
$C_2 O_4^{2-}$	Oxalato
NHOH	Hydroksilamido
$(CH_3)_2N$	Dimethylamido
$S_2 CNR_2^-$	Dialkyldithiocarbamato (dtc) s
	-)c=N'R

CH₃COCHCOCH₃⁻

Acetylacetonato (acac)

 $(^{\circ}OOCCH_2)_2NCH_2CH_2N(CH_2COO^{\circ})_2$

Ethylenediaminetetraacetato (EDTA)

- 0- de ch. ch. ch. é- 0-NCh ch. N - ch. é- 0-

Neutral ligands H_2O COCS NO O_2 PR_3 $H_2NCH_2CH_2NH_2$ $H_2NCH_2CH_2NHCH_2CH_2NH_2$ HN NH NHL *H*₂*NCH*₂*CH*₂*NHCH*₂*CH*₂*NHCH*₂*CH*₂*NH*₂ NIL C_5H_5N $C_5H_4N-C_5H_4N$ $(C_6H_5)_2PCH_2CH_2P(C_6H_5)_2$.ch-Ah NH_3 N_2 H_2 CH_3NH_2 $C_{12}H_8N$ HONC(CH₃)-C(CH₃)NOH -cH3 LO $N(C_2H_5NH_2)_3$ C_5H_4N - C_5H_3N - C_5H_4N

Positive ligands NO^+ $NH_2NH_3^+$ O_2^+ Aqua Carbonyl Thiocarbonyl Nitrocyl Dioxygene Trialkylphosphine Ethylenediamine (en) Diethylenediamine (dien)

Triethylenediamine (trien)

Pyridine (py) 2,2'-Bipyridine (bipy)

1,2-Bis(diphenylphosphino)ethane (dppe)

Ammine Dinitrojen Dihidrojen Methylamine 1,10-Phenanthroline (phen)

Dimethylglyioxime (DMG)

 β , β ', β ''-Triaminotriethylamine (tren)

Terpyridine (terpy)

Pirazolilborat

Nitronium Hydrazinium Dioxygenyl