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Number Representations
Representations of the Numbers

• Computers are consist of large but finite memory and
processor which do calculations on the stored
numbers.

• Memory is a sequence of electronic components which
can only take two values namely bits (0 or 1). This
means that all numbers are stored in memory in binary
form.

• As a consequence, N bits can store integers in the
range [0, 2N ].

2014-2015 Spring Term Ankara University Department of Computer Engineering – p.2/66



Number Representations
• Storing arbitrary numbers on the memory require an

optimization.

• Since the memory of the computer has limited space
the use of this space require a decesion between,

• 1) either each number will take as much spase as
possible or

• 2) as many numbers with limited precision (number
of bits) as possible.
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Number Representations
• The numbers must be long enough to give the required

high precission of scientific calculations and short
enough to store as many numbers as possible.

• To fullfill these requirements the structure of the
computer memory is organized such that memory and
storage sizes are measured in bytes, kilobytes,
megabytes, gigabytes, terabytes, and petabytes
(1015).

1 Bit (binary integers) 0 and 1

1 byte 1B = 8 bits.

1K 1 kB = 1024 bytes.
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Number Representations
• Some care is needed here for those who chose to

compute sizes in detail because a K is not always a
1000.
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Number Representations
•

•
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Number Representations
•• A problem in computer design is how to represent an

arbitrary number using a finite amount of memory
space, and then how to deal with the limitations arising
from that representation.

• As a consequence of computer memories being based
on the magnetic or electronic realization of a spin
pointing up or down, the most elementary units of
computer memory are the two bits .
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Number Representations
•

•
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Number Representations
•• Consequently, binary strings are converted to octal,

decimal, or hexadecimal numbers before results are
communicated to people.

• Octal and hexadecimal numbers are nice because the
conversion loses no precision, but not all that nice
because our decimal rules of arithmetic do not work for
them.

• Converting to decimal numbers make the numbers
easier for us to work with, but unless the number is a
power of two, the process leads to a decrease in
precision.

• A description of a particular computer system will
normally state the word length, that is, the number of
bits used to store a number.
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Number Representations
•

•
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Number Representations
•• In order to optimize the memory usage all computer

languages define different size variables and
constatnts.

• Variables are given name for storage allocation for a
finite space in the memory with changing content.
Variables and constants may have type, Boolean,
Character, Integer, Float, . . . .

• Each type of variable have finite, predetermined
size,which is called “Word size”
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Number Representations
• At the beginning each computer brand used different

size variable. This create confusion when results are
compared. In 1987 IEEE standards for the number
representations are accepted. Table 12 presents
standard word sizes.

Boolean (True, False) = 1 bit

Character (A,B,C,. . . ) = 1 byte

Single Precision Integer = 4 bytes

Double Precision Integer = c bytes

Single Precision Float = 4 bytes

Double Precision Float = 8 bytes

Table 1: IEEE standard for the variable and con-
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Number Representations
•

•
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Number Representations
Integer Representations

•• Integers are typically 4 bytes (32 bits) in length and in
the range −2147483648 ≤ 4B integer ≤ 2147483647.

B : Base,

E : Exponent,

S : Sign,

N : Word Length

I = S × (aN−1B
N−1 + aN−2B

N−2 + . . . + a0B
0)

where 0 ≤ ai < B.

• Common bases are 10, 8, 16 or 2.
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Number Representations
•

•
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Number Representations
•• In binary (B = 2) and Decimal (B = 10) notations

largest and smallest single precision integers are:

I2max = [0][1111111111111111111111111111111] = +231

I10max = +2147483647

I2max = [1][1111111111111111111111111111111] = −231

I10max = −2147483648
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Number Representations

Example: The same number in binary (B = 2), Octal
(B = 8), Hexadecimal (B = 16) and Decimal (B = 10)
notations.

I10 = 3× 105 + 3× 104 + 7× 103 + 5× 102

+5× 101 + 9× 100

I16 = 5× 164 + 2× 163 + 6× 162 + 9× 161 + 7× 160

I2 = 1× 218 + 0× 217 + 1× 216 + 0× 215

+0× 214 + 1× 213 + 0× 212 + 0× 211 + 1× 210

+1× 29 + 0× 28 + 1× 27 + 0× 26 + 0× 25

+1× 24 + 0× 23 + 1× 22 + 1× 21 + 1× 20
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Number Representations
•

•
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Number Representations
Real Numbers

•• Real numbers are represented on computers in either
fixed-point or floating-point notation.

• Fixed-point notation can be used for numbers with a
fixed number of places beyond the decimal point
(radix) or for integers.

• It has the advantages of being able to use two’s
complement arithmetic and of storing integers exactly
3.
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Number Representations
•

•
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Number Representations
Fix Point Representation

•• In the fixed-point representation with N bits and with
two’s complement format, a number is represented as

Nfix = sign×(an2
n+an−12

n−1+. . .+a02
0+. . .+a

−m2
−m),

where n+m = N − 2.

• That is, one bit is used to store the sign, with the
remaining N − 1 bits used to store the ai values (the
powers of 2 are understood).

• The particular values for N ,m, and n are
machine-dependent.
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Number Representations
•

•
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Number Representations
Floating Point Number Representation

•• Most scientific computations use double–precision
floating point numbers (64b = 8B).

• The floating–point representation of numbers on
computers is a binary version of what is commonly
known as “scientific” or “engineering” notation.
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Number Representations

• For example, the speed of light c = +2.99792458× 10+8

m/s in scientific notation and +0.299792458× 10+9 or
0.299795498 E09 m/s in engineering notation. In any of
these cases, the number out front is called the
mantissa and contains nine significant figures. The
power to which 10 is raised is called the exponent, with
the + sign included as a reminder that these numbers
may be negative. Floating point numbers are stored on
the computer as a concatenation.
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Number Representations
•

•
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Number Representations
•• The two’s complement of a binary number is the value

obtained by subtracting the number from 2N for an N
bit representation. Because this system represents
negative numbers by the two’s complement of the
absolute value of the number, additions and
subtractions can be made without the need to work
with the sign of the number.
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Number Representations
• Since any floating number must be represented in

finite number of bits, the floating point system is finite
and discrete.

B Base.

P Precision (Number of bits speared for the mantissa).

L,U Exponent Range U :Upper,L:Lower.
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Number Representations
•

•
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Number Representations
•• If E is the exponent the number x represented in base
B sytem as,

x = (
d0
B0

+
d1
B1

+
d2
B2

+ . . .+
dp−1

Bp−1
)BE

where, 0 ≤ di < B − 1, i = 0, . . . , p− 1 L < E < U .
Mantissa : d0, d1, . . . , dp−1

• Sigh, exponent and mantissa are stored in seperate
fixed-width fields of each floating word. Parameters for
typical floating point system using IEEE standards for
the exponents of the floting point representation:

B p L U

Single Precision 2 24 -126 127

Double Precision 2 53 -1022 10232014-2015 Spring Term Ankara University Department of Computer Engineering – p.29/66



Number Representations
•

•
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Number Representations
•• Floating point system is normalized if leading digit is

always nonzero unless number represented is zero. In
a normalized system if manissa, m 6= 0, 1 ≤ m < B.

• Not all real numbers x are exactly representable. If a
real number is exactly representable in a given
precision, this number is called machine represantable
floating point number. If a real number x is not exactly
representable, than it is approximated by ”nearby”
machine represantable floating point number.
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Number Representations

Total number of normalized floating numbers is;

2(B − 1)Bp−1(U − L+ 1) + 1

1. Smallest normalized pozitive number : BL,

2. largest normalized number : BU+1(1− B−p).

3. This process is called rounding and error introduced by
this process is called rounding error.
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Number Representations

Chop : Truncate base B expansion of x after (p− 1)st digit

Round: x is rounded to the nearest representable floating
point number. In case of tie, x is roundet to the nearest
floating point number with even last digit.
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Number Representations

Accuracy of floating point system is characterized by unit
roundoff or machine precision.

ǫmach =

{

B1−p by chopping
1

2
B1−p by rounding

(1)

Units of roundoff ǫmach is determined by the number of digits

in mantissa of floating point system.
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Number Representations

Underflow: if a number is smaller than representable
smallest number this stuation is called Underflow‘w.

Overflow: If a number is larger than the representable
largest number thsi stuation is called Overflow.

Both Underflow and Overflow are related to the range of

the exponent field.
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Number Representations

ǫmach =

{

2−24 Single Precision

2−53 Double Precision
(2)

2014-2015 Spring Term Ankara University Department of Computer Engineering – p.36/66



Number Representations

Alternative definition of the machine precision can be given
by choosing the smallest number, ǫ such that,

(1 + ǫ) > 1

It= 1 Eps = 0.50000000 Val=1.5000000

It= 4 Eps = 6.25000000E-02 Val=1.0625000

It= 6 Eps = 1.56250000E-02 Val=1.0156250

It= 8 Eps = 3.90625000E-03 Val=1.0039063

It=10 Eps = 9.76562500E-04 Val=1.0009766

It=12 Eps = 2.44140625E-04 Val=1.0002441

It=14 Eps = 6.10351563E-05 Val=1.0000610

It=16 Eps = 1.52587891E-05 Val=1.0000153

It=18 Eps = 3.81469727E-06 Val=1.0000038

It=20 Eps = 9.53674316E-07 Val=1.0000010

It=22 Eps = 2.38418579E-07 Val=1.0000002

It=23 Eps = 1.19209290E-07 Val=1.0000001
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Number Representations

floating Point Number System

• if a number smaller than representable smallest
number Underflow

• If a number larger than the representable largest
number, Overflow,

• Underflow and Overflow related to the range of the
exponent field.
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Number Representations

IEEE floating point standart provides special values to
indicate two exceptional stuations.

Inf : Infinity results from dividing a finite number by zero,
1/0.

NaN : Not a Number, stands for 0/0, 0× Inf or Inf/Inf.

Inf and NaN are implemented in IEEE arithmetic through

special reserved values of exponent field.
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Number Representations
Sources of Errors in Computation
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Number Representations
General Strategy for Numerical Simulation and Modelling

Well-Posed Problems

Problem is well-posed if solution

1. exists

2. is unique

3. depends continuously on problem data

Otherwise, problem is ill-posed Even if problem is well

posed, solution may still be sensitive to input data. Com-

putational algorithm should not make sensitivity worse.
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Number Representations

How to Model a Real World Problem Replace difficult problem
by easier one having same or closely related solution

1. infinite → finite

2. differential → algebraic

3. nonlinear → linear

4. complicated → simple

Solution obtained may only approximate that of original

problem.
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Number Representations
Sources of Error in Moddeling Approximation

Before computation

1. modeling

2. empirical measurements

3. previous computations

During computation

1. truncation or discretization

2. rounding
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Number Representations

Accuracy of final result reflects all these uncertainty in input

may be amplified by problem perturbations during compu-

tation may be amplified by algorithm.
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Number Representations
Example:

Problem:

Computing surface area of Earth using formula A = 4πr2

Approximations:

• Earth is modeled as a sphere.

• Value for radius is approximate.

• Value for π requires truncation.

• Values for input data and results of arithmetic
operations are rounded in computer.
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Number Representations
Absolute Error and Relative Error

Absolute error = (approximate− true) value

Relative error =
absolute error

true value
Approx value = (true value)× (1 + relative error)

True value usually unknown, so we estimate or bound error
rather than compute it exactly

Relative error often taken relative to approximate value,

rather than (unknown) true value
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Number Representations

Data Error and Computational Error Typical problem: compute
value of function f : R → R for given argument x = true
value of input f(x) = desired result x̂ = approximate

(inexact) input f̂ = approximate function; actually
computed
Total error :

f̂(x̂)− f(x) =

f̂(x̂)− f(x̂) + f(x̂)− f(x)

computational error + propagated data error

Algorithm has no effect on propagated data error
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Number Representations
Computational Error

Truncation Error : Difference between true result (for actual
input)and result produced by given algorithm using
exact rithmetic.Truncation of infinite series.

Rounding Error : Difference between results produced by
given algorithm and result produced by the same
algorithm using limited precision aritmetic.
Computational error is the sum of Rounding error and
truncation error.
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Number Representations

Calculation of the machine precision
int main(){

float eps,sum;

int i,n;

n = 25;

printf("Calculate machine precision 1+eps~1\n");

eps = 1.0;

for(i = 1;i<=n;i++){

eps = eps/2.0d0;

sum = 1.0 + eps;

printf("Iter=%2d Eps=%12.8f \

value=%12.8f\n",i,eps,sum);

}

}
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Number Representations

Calculation of the machine precision
Calculate machine precision 1+eps ~ 1; eps = eps/2

Iter = 1 Eps =0.50000000 value =1.50000000

Iter = 2 Eps =0.25000000 value =1.25000000

Iter = 3 Eps =0.12500000 value =1.12500000

Iter = 4 Eps =0.06250000 value =1.06250000

Iter = 5 Eps =0.03125000 value =1.03125000

Iter = 6 Eps =0.01562500 value =1.01562500

Iter = 7 Eps =0.00781250 value =1.00781250

Iter = 8 Eps =0.00390625 value =1.00390625

Iter = 9 Eps =0.00195312 value =1.00195312

Iter = 10 Eps =0.00097656 value =1.00097656

Iter = 11 Eps =0.00048828 value =1.00048828

Iter = 12 Eps =0.00024414 value =1.00024414
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Number Representations

Calculation of the machine precision
Iter = 13 Eps =0.00012207 value =1.00012207

Iter = 14 Eps =0.00006104 value =1.00006104

Iter = 15 Eps =0.00003052 value =1.00003052

Iter = 16 Eps =0.00001526 value =1.00001526

Iter = 17 Eps =0.00000763 value =1.00000763

Iter = 18 Eps =0.00000381 value =1.00000381

Iter = 19 Eps =0.00000191 value =1.00000191

Iter = 20 Eps =0.00000095 value =1.00000095

Iter = 21 Eps =0.00000048 value =1.00000048

Iter = 22 Eps =0.00000024 value =1.00000024

Iter = 23 Eps =0.00000012 value =1.00000012

Iter = 24 Eps =0.00000006 value =1.00000000

Iter = 25 Eps =0.00000003 value =1.00000000
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Number Representations

Computational Error
Calculate exponantial function,

f(x) = exp(x)

ŷ = 1 +
x

1!
+

x2

2!
+

x3

3!
+ · · ·

int main(){

float x,x2,x3,x4,sum;

x = -0.5;

printf("Calculate exp(-0.5) by using Taylor series\n");

sum = 1.0+x+(x2=(x*x/2.0))+(x3=(x2*x/3.0))+(x4=(x3

printf("value= %f err= %+f \n",sum,exp(-0.5)-sum);

return(0);

}
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Number Representations

Series Summation
int main(){

float x,xx,sum;

int i,n=7;

x = -0.5;

printf("Calculate exp(-0.5) by using Taylor series\n");

sum = 1.0;

xx = 1.0;

for(i = 1;i<=n;i++){

xx = xx * x/(float)i;

sum = sum + xx;

printf("Iter=%d value=%f err=%+f \n",\

i,sum,exp(-0.5)-sum);

}

return(0);

}
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Number Representations

bf Calculate exp(0.5) by using Taylor
series Expansion
It=1 Val=1.5000000 err= 0.14872122

It=2 Val=1.6250000 err= 2.37212181E-02

It=3 Val=1.6458334 err= 2.88784504E-03

It=4 Val=1.6484375 err= 2.83718109E-04

It=5 Val=1.6486980 err= 2.32458115E-05

It=6 Val=1.6487197 err= 1.54972076E-06

It=7 Val=1.6487212 err=0.0000000
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Number Representations

Calculate exp(-0.5) by using Taylor series
It=1 Val=0.50000000 err= 0.10653067

It=2 Val=0.62500000 err=-1.84693336E-02

It=3 Val=0.60416669 err= 2.36397982E-03

It=4 Val=0.60677087 err=-2.40206718E-04

It=5 Val=0.60651046 err= 2.02059746E-05

It=6 Val=0.60653216 err=-1.49011612E-06

It=7 Val=0.60653061 err= 5.96046448E-08
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Number Representations

Truncation Error
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Number Representations
Example : Calculate cosine function by truncated series expansion

If only two terms are taken,

absolute error = 1− x2

2!
− cos(x)

∼ O(
x4

4!
)

(3)

Truncation error can be reduced by increasing the number

of terms included in the expansion until the machine precis-

sion is reached.
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Number Representations
Example : Calculate cosine function by truncated series expansion

For x = 1.0,

f(1.0) = cos(1.0) = 0.5403

f̂(1.0) = 1− x2

2!
= 0.5

f̂(1.0) = 1− x2

2!
+

x4

4!
+O(

x6

6!
)

f̂(1.0) = 1− x2

2!
+

x4

4!
− x6

6!
+O(

x8

8!
)

(4)
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Number Representations

Errors in Computation
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Number Representations
Error in finite difference approximation:

The derivative of a function at x = xi, Taylor Series
expansion of the function f(x),

f(xi +∆x) = f(xi) +
df

dx

∣

∣

∣

∣

x=xi

∆x+
1

2

d2f

dx2

∣

∣

∣

∣

x=xi

∆x2 + · · ·

leads to first derivatibe at x = xi

∂f

∂x

∣

∣

∣

∣

x=xi

=
f(xi +∆x)− f(xi)

∆x
+O(∆x)
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Number Representations

Errors in Computation

The first term not included in the calculations is, 1

2!

∂2f

∂x2

∣

∣

∣

x=xi

.

If M bounds ∂2f

∂x2

∣

∣

∣

x=xi

The truncation error is bounded by

M∆x

2

Rounding error bounded by 2ǫ/∆x where ǫ is the error in
function values.

Total error =
M∆x

2
+

2ǫ

∆x

Total error is minimized when ∆x ∼ 2
√

ǫ/M .

Calculate y = f(x) where f : R → R

Forward error = ∆y = ŷ − y whereŷ = f(x̂)
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Number Representations

Example : f(x) =
√
x

Problem is insensitive or well conditioned if relative change
in the input causes similar relative change in the output.
Problem is sensitive od ill conditioned if relative change in
solution can be much larger than the input data.
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Number Representations

Condition number =
Relative change in solution

Relative change in input data

Condition number =
|[f(x̂)− f(x)|] /f(x)

|[(x̂− x)/x]|
Problem is sensitive or ill conditioned if
Condition number >> 1. Condition number is an
amplification factor.

Relative forwarderror = Condition number×Relative backward error
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Number Representations

Stable Algorithm: Algorithm is stable if results are relatively
insensitive to perturbations dring calculations. For
stable algorithm, effects of computational error is no
worse than effects of small data errorin input.

Accuracy : Closeness of computed solution to true solution
of the problem.

Precision: The number of digits that is trustable.
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Number Representations
Stability of algorithm does not guarantie accurate results. Accu-

racy depends on conditioning of the problem as well as stability of

the algoritm. Inaccuracy can esult from aplying stable algorithm to

ill-conditioned problems or unstable algorithm to well-conditioned

problem.
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Number Representations

Example : Tangent is sensitive to its arguments near Π/2.

tan(1.57079) ∼ 1.58058 105

tan(1.57078) ∼ 6.12490 104

∆x = 0.00001 ∆f = 9.6809 104
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