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Basics of Numerical Analysis
Taylor Series Expansion

• In this chapter we will discuss the main ideas of
numerical computations and computational science by
taking a very simple approach, namely only
considering Taylor series expansion of a function.
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Basics of Numerical Analysis
Taylor Series Expansion

• When a continuous function is represented on a
discrete space-mesh, the smallest difference can not
be less than the difference between two points on the
mesh.

• Function has discrete values on the mesh. Never the
less continuous function values can be obtained
between these discrete points. Starting at the ith point
of the mesh whose coordinate is xi, the value of the
function at any point between two points i and i+ 1
can be obtained by considering the Taylor’s series
expansion (as apolynom) of the function.
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Basics of Numerical Analysis
Taylor Series Expansion

•

f(xi +∆x) = f(xi) +
df

dx
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d3f

dx3
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x=xi

∆x3 + · · ·

• Expanding a function into Taylor series and taking a
certain number of terms in this series corresponds to
approximating the function by a polynomial.
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Basics of Numerical Analysis
Taylor Series Expansion

• The essence of numerical computation lies in
expanding a function to a polynomial and doing
calculations analytically in valid and controllable
fashion in a small interval. Summing all these small
intervals give the desired solution in the actual interval.

2014-2015 Spring Term Ankara University Department of Computer Engineering – p.5/68



Basics of Numerical Analysis
Difference Derivatives in Space

• Function values are defined on the mesh points,
i, i = 0 · · ·N . By taking ∆x as the distance between
the mesh points ∆x = xi+1 − xi.

• Difference derivative can be obtained in discrete form
using Taylor series expansion:

f(xi +∆x) = f(xi) +
df

dx

∣

∣

∣

∣

x=xi

∆x+O(∆x2)

• By rearranging the expansion, Eq.(6),

df

dx

∣

∣

∣

∣

x=xi

=
f(xi +∆x)− f(xi)

∆x
+O(∆x)
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Basics of Numerical Analysis
Difference Derivatives in Space

•

∆f

∆x
=

f(x+∆x)− f(x)

∆x

This form of the approximate first derivative is called
2-Point Forward difference formula since the difference
is considered with a forward point.

• Similarly, from expansion of f(xi −∆x) 2-Point
backward difference derivative formula can be
obtained.

∆f

∆x
=

f(x)− f(x−∆x)

∆x
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Basics of Numerical Analysis
Difference Derivatives in Space

• Forward and backward difference formulas are good
approximations to the first derivative df/dx if f(x) does
not change very rapidly over ∆x.

• In this approximation the error is of the order of ∆x.

• In order to increase the accuracy, difference between
the mesh points must be decreased in other word the
existing interval xi+1 − xi must be divided into smaller
intervals.
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Basics of Numerical Analysis
Difference Derivatives in Space

• When it is possible to reduce ∆x, one may run into
another type of difficulty:

• If the function f is a very smooth function, i.e., the
change in the function in this interval is less than the
machine accuracy, the discrete derivative of the
function may be unpredictable.

• Hence reducing ∆x is not a solution.

• In some cases the function values are provided at
discrete points.

• In this case it is not possible to reduce the distance
between the mesh points.
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Basics of Numerical Analysis
Difference Derivatives in Space

• New more accurate approximations must be found.

• More accurate approximations can be obtained by
including more terms in the Taylor series expansion.

• Method of obtaining more accurate formula is to cancel
higher terms in the Taylor series.

• Expand the function at various mesh points and
combine them in such a way that only very high order
terms in the expansion will remain.
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Basics of Numerical Analysis
Difference Derivatives in Space

• A three point formula can be written by using Taylor
expansion of the function f at the mesh points xi+1 and
xi−1.

f(xi+∆x) = f(xi)+
df

dx
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f(xi−∆x) = f(xi)−
df

dx
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∆x2−O(∆x3)
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Basics of Numerical Analysis
Difference Derivatives in Space

• Substracting these formulas, a first derivative formula

is obtained with O(∆x2) accuracy.

df

dx

∣

∣

∣

∣

x=xi

=
f(xi +∆x)− f(xi −∆x)

2∆x
+O(∆x2)
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Basics of Numerical Analysis
Difference Derivatives in Space

• First derivative:

/*------------------------------------------------------

double Deriv_1(double func(double x),double x0 ,double

{return(((func(x0+dx)-func(x0-dx))/(2*dx)));}

/*-------------------------------------------------------

• Second derivative:

/*-------------------------------------------------------

double Deriv_2(double func(double x),double x0,double

{return(((func(x0+dx)+func(x0-dx)-2.0*func(x0))/(dx

/*------- ------------------------------------------------
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Basics of Numerical Analysis
Difference Derivatives in Space

• Similarly the accuracy can be increased further by
expanding the function at five different mesh points,
xi−2, xi−1, xi+1, xi+2.

df

dx

∣

∣

∣

∣

x=xi

=
1

8∆x
(f(xi − 2∆x)− 8f(xi −∆x) + 8f(xi +∆x)

+f(xi + 2∆x)) +O(∆x4)
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Basics of Numerical Analysis
Difference Derivatives in Space

• Second and higher order derivatives can be obtained
analogously.

• Second order derivative of a function f can be simply
written from the summing taylor series expansions of
f(xi +∆x) and f(xi +∆x).

d2f

dx2

∣

∣

∣

∣

x=xi

=
f(xi +∆x)− 2f(xi) + f(xi −∆x)

∆x2
+O(∆x4)

• This formula can also be obtained by applying first
derivative twice on the function,
d2f(x)
dx2 = d(f(x+∆x)−f(x))/∆x

dx
.
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Basics of Numerical Analysis
Difference Derivatives in Space

• More accurate the second derivative formula can be
obtained by considering Taylor series expansion of the
function f(x) at five different mesh points,
xi−2, xi−1, xi+1, xi+2.

•

d2f

dx2

∣

∣

∣

∣

x=xi

=
1

12∆x2
(−f(xi − 2∆x)− 16f(xi −∆x)− 30f(xi)

+16f(xi +∆x)− f(xi + 2∆x)) +O(∆x4)
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Basics of Numerical Analysis
Partial derivatives:

• Partial derivatives can olso be obtained by using
difference derivatives:

f(x+∆x, y) = f(x, y) +
∂f

∂x
∆x+

1

2

∂2f

∂x2
∆x2 +O(∆x3)

f(x, y +∆y) = f(x, y) +
∂f

∂y
∆y +

1

2

∂2f

∂y2
∆y2 +O(∆y3)

f(x+∆x, y +∆y) = f(x, y) +
∂f

∂x
∆x+

∂f

∂y
∆y +

1

2
(
∂2f

∂x2
∆x2 +

∂2f

∂y2
∆y2) +

∂2f

∂x∂y
∆x∆y +O(∆3)
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Basics of Numerical Analysis
Partial derivatives:

• Partial derivatives with respect to x and y in terms of
difference derivatives:

∂f(x, y)

∂x
=

f(x+∆x, y)− f(x, y)

∆x

∂f(x, y)

∂y
=

f(x, y +∆y)− f(x, y)

∆y
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Basics of Numerical Analysis
Interpolation

• In many problems of function values may be obtained
in discrete points.

• Two most common examples of discrete function
values are:

• The experimental values of an observable.

• Tabulated values of some functions.

• In either case commonly a value between the given
points may be necessary.

• At this point interpolation come into play.
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Basics of Numerical Analysis
Interpolation

• In numerical analysis there are many methods of
interpolation in order to meet the special requirement
of the problem.

• In some cases known points are equally spaced and in
some other case the independent variable may be
chosen arbitrarily.

• Here in this section the aim is to give the feeling of
interpolation rather than to give an explicit account of
this method.

• For this aim, the discrete Taylor series expansion of the
function at the point xi is sufficient.
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Basics of Numerical Analysis
Interpolation

• Calculate the value of f(x), xi < x < xi+1.

f(x) = f(xi) +
df

dx

∣

∣

∣

∣

x=xi

∆x+
1

2

d2f

dx2

∣

∣

∣

∣

x=xi

∆x2 +O(∆x3)

• As a first approximation the first derivative may be
replaced by difference formula,

df

dx

∣

∣

∣

∣

x=xi

=
f(xi+1)− f(xi)

∆x

Considering only the terms up to second order, Taylor
series become,

f(x) = f(xi) +
f(xi+1)− f(xi)

∆x
(x− xi)
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Basics of Numerical Analysis
Interpolation

• will lead to,

f(x) = [1− ε]f(xi) + εf(xi+1)

where ε = x−xi

xi+1−xi

.

• If f(x) is a smooth function in the considered interval,
this approximation is a reasonable representation of
the function f(x) at the point x which lies in between
the mesh points xi and xi+1.

• For better approximation, higher order polynomials will
be necessary.
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Basics of Numerical Analysis
Interpolation

• Calculating the function at three points, one can obtain
a better approximation: a quadratic polinom.

• By using difference formulas,the Taylor seies
expansion around xi is,

f(x) = f(xi) +
f(xi+1)− f(xi−1)

2∆x
(x− xi) +

1

2

f(xi+1)− 2f(xi) + f(xi−1)

∆x2
(x− xi)

2

+O(∆x3)(1)

where only the terms up to O(∆x3) is considered.
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Basics of Numerical Analysis
EXAMPLES

1. Tabulated values of sinθ are:

θ sin θ

0.80 0.71736

0.81 0.72429

0.82 0.73115

Obtain values in between the tabulated values.
Check:Use x1 = 0.80, x2 = 0.82 and obtain
x = 0.81 f = 0.72426 is reasonable.

2. Given a set of data points check which ones are out of
place.
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Basics of Numerical Analysis
Roots of a Function

• Finding the roots of a function is one of the most
commonly met problems of numerical analysis.

• By definition, a is a root of f , if f(a) = 0.

• However in numerical applications it must be
understood that the equation usually can not be
satisfied exactly due to round-off errors and limited
capacity.

• Therefore the mathematical definition of a root must be
modified.
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Basics of Numerical Analysis
Roots of a Function

• The condition of having a root at x = a may be
modified such that |f(a) < ǫ|, where ǫ is a given
tolerance suffices.

• The inequality defines an interval instead of a point.
Assuming the function value is known at a point xo

which is at the vicinity of the root of the function.
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Basics of Numerical Analysis
Roots of a Function

• Taylor series expansion, at x = xo +∆x:

f(x) = f(x0) +
df

dx

∣

∣

∣

∣

x=x0

∆x+O(∆x2)

• f(x) will be equal to zero if xo +∆x is the unknown
root of the function.

• Hence root of the function can be obtained as,

f(x0) +
df

dx

∣

∣

∣

∣

x=x0

(x− x0) = 0, −→ x = x0 −
f(x0)
df
dx

∣

∣

x=x0
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Basics of Numerical Analysis
Roots of a Function

• This formula is known as Newton-Rapson formula.

• In fact, it is not possible to know a point xo that is very
close to the actual root of the function.

• This method is used to generate a sequence of values

xi, converging to true root value x.
•

xi+1 = xi −
f(xi)

df(x)/dx|xi
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Basics of Numerical Analysis
Roots of a Function

• Newton-Rapson root-finding program

/*-------------------------------------------------------------------

double Newton(double f(double x),double deriv(double

{#define MAXCOUNT 100

double x,xn,count=0;

xn = x0;

do{ x = xn;

xn = x - (f(x)/deriv(x));

count++;

}while((fabs(xn-x) >= acc) && ( count < MAXCOUNT));

return(xn);}

/*-------------------------------------------------------------------
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Basics of Numerical Analysis
Roots of a Function

• The difficulty with the Newton-Rapson formula is the
requirement of the derivative of the function.

• This difficulty is eased if the derivative at point xi is
replaced with the difference formula,

fracdf(x)dx|xi
≃ f(xi)− f(xi−1)

xi − xi−1

• The Newton-Rapson formula then becomes,

xi+1 = xi − f(xi)
xi − xi−1

f(xi)− f(xi−1)

which is called Secant formula.
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Basics of Numerical Analysis
Roots of a Function

• Secant algorithm:

/*-------------------------------------------------------------------

double Secant(double f(double x),double x0,double

{#define MAXCOUNT 100

double x,xn,deltax=0.001,count=0;

xn = x0;

do{ x = xn;

xn = x - (2*deltax*f(x)/(f((x+deltax))-f((x-deltax))));

}while((fabs(xn-x) >= acc) && ( count++ < MAXCOUNT));

return(xn);

}

/*-------------------------------------------------------------------
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Basics of Numerical Analysis
Roots of a Function

• It can be shown that the convergence of the
Newton-Rapson/Secant method is quadratic.

• This fact also means that the number of correct
decimals is approximately doubled at every iteration at
least if the factor f ′′(a)/2f ′(a) is not too large.

• The method can be used both algebraic and
transcendental equations, and it also works when
coefficients of roots complex.
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Basics of Numerical Analysis
Roots of a Function

• The derivation presented here assumes that the
desired root is simple.

• If the root is of multiplicity P > 1 the convergence
speed is given by ǫn+1 ≃ [(P − 1)/P ] ǫn

• The modified formula,

xn+1 = xn −
pf(xn)

f ′(xn)

restores the quadratic convergence.
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Basics of Numerical Analysis
Roots of a Function

• If the multiplicity is not known we can instead search
for a zero of this function f(x)/f ′(x).

• Assuming that f ′(x) finite everywhere this function has

the same zeros as f(x) with only difference that all
zeros are simple.

• This leads to the formula

xn+1 = xn −
f(xn)f

′(xn)

f ′2(xn)− f(xn)f ′′(xn)

where again quadratic convergence is restored.
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Basics of Numerical Analysis
Roots of a Function

• Despite the speedy convergence of the method,
convergence depends on the initial value.

• If the initial value is not chosen near the root, either
convergence is very slow or even divergence from the
root is possible.

• Before starting the Newton-Rapson routine it is
generally advisable to locate the roots of the function
by using a crude method.
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Basics of Numerical Analysis
Roots of a Function

• In some suitable method construct a sequence of
numbers,x1, x2, x3, . . . , xn where
x1 < x2 < x3 < . . . < xn.

• If f(xn)f(xn + 1) < 0, at least a root must lie in
between the points xn and xn+1,in which case

x0 =
1
2
(xn + xn+1) is a good starting value for

Newton-Rapson or secant method.
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Basics of Numerical Analysis
Roots of a Function

• Bisection Algorithm:

double Bisect(double fnct(double x),double a,double

{

double x0=0.0,x1=(a<b?a:b),x2 =(a<b?b:a),deltax

f1 = fnct(x1);f2 = fnct(x2);

do {if(f1 * f2 < 0)

{ deltax = deltax / 2.0; x0 = x1 + deltax;

if(f0 * f1 < 0.0 )f2 = f0; else { x1 = x0;

}

}while((deltax > eps) && (*ierr == 0));

return(x0);

}
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Basics of Numerical Analysis
Roots of a Function

• Roots of a complex function:

• It should be noted that in the case of an algebraic
equation with real coefficients, a complex root can not
be reached with a real starting value.

• For the complex case Newton-Rapson formula
becomes,

Zn+1 = Zn −
f(z)

f ′(z)
.
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Basics of Numerical Analysis
Roots of a Function

•

x4 − x = 10

By Newton-Rapson formula, setting f(x) = x4 − x− 10
we get

xn+1 = xn −
x4
n − xn − 10

4x3
n − 1

=
3x4

n + 10

4x3
n − 1

x0 = 2

x1 = 1.871

x2 = 1.85578

x3 = 1.855585

(2)
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Basics of Numerical Analysis
Roots of a Function

• Find the square root of a number.

√
a = x

or

f(x) = x2 − a

Then in Newton-Rapson method,

xn+1 = xn −
x2
n − a

2xn

a=2 a=2 a=7

x0 = 2 x0 = 5 x0 = 1

x1 = 1.5 x1 = 2.7 x1 = 4

x2 = 1.41666 x2 = 1.720 x2 = 2.875
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Basics of Numerical Analysis
Roots of a Function

• Find the roots of the function,

f(x) = x3 − x

by using Nweton-Rapson method.

f ′(x) = 3x− 1

xn+1 = xn −
x3
n − xn

3xn − 1

Roots are, x = 0, x = 1 and x = −1 choose
x0 = −0.4472, −0.44725 and − 0.4473 to which root it
converges?
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Basics of Numerical Analysis
Integration

• In this section we are interested in calculating definite
integral of a continuous function f(x) between two

limits, a− b (a < b).

• In numerical integration function may be known at
some discrete values, xi, of the independent variable x.

• Knowing a vector of function values (fi), if a good
interpolation can give the function value at any point in
the interval ∆x, between the known values of the
function, the integral becomes a success.
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Basics of Numerical Analysis
Integration

• Hence for integration, interpolation plays the most
important role.

• An interpolation method can be used to obtain the
function as a polinomial in the interval xi and xi+1.

• Analitical integration of the polinomial is the
approximate numerical integral of this function in this
interval.

• Summing all intervals between the end points,a and b
give the desired integral.

• The error on the integration is also closely dependent
on the error of representing the function between the
mesh points.
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Basics of Numerical Analysis
Integration

• There are many integration algorithms based on
different levels of sophistication.

• Here, we will discuss one of the methods which is
based on Taylor series expansion up to O(∆x3),
namely Simpson integration algorithm.

• For Simpson’s integration algorithm equally spaced
even number of intervals are considered: N(even).

• N Function values will be calculated,

N =
b− a

∆x
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Basics of Numerical Analysis
Integration

• Since the integral may be written as the sum of
integrals it is sufficient to define an interpolation
formula for the interval 2∆x.

∫ b

a

f(x)dx =

∫ a+2∆x

a

f(x)dx+

∫ a+4∆x

a+2∆x

f(x)dx+. . .+

∫ b

b−2∆x

f(x)dx
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Basics of Numerical Analysis
Integration

• If the function is a smooth function, in these small
intervals a Taylor series expansion at the middle of the
interval may be a good approximation. By making
appropriate change of variable integrals over the
interval of 2∆x may be written such that,

∫ x0+∆x

x0−∆x

f(x)dx
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Basics of Numerical Analysis
Integration

• By using difference formulas,the Taylor seies
expansion at xo is,

f(x) = f(x0) +
f(x0 +∆x)− f(x0 −∆x)

2∆x
(x− x0) +

1

2

f(x0 +∆x)− 2f(x0) + f(x0 −∆x)

∆x2
(x− x0)

2

+O(∆x3)(3)

where only the terms up to O(∆x3) is considered.
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Basics of Numerical Analysis
Integration

• since the interval is symmetric, no contribution comes
from the odd terms. Considering all terms up to the

order ∆x3,

∫ x0+∆x

x0−∆x

f(x)dx =
∆x

3
(f(x0−∆x)+4f(x0)+f(x0+∆x))+O(∆x5)

here since O(∆x3) term has no contribution, the error

term is at O(∆x5).
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Basics of Numerical Analysis

Integration Examples

• This formula is known to be Simpson’s rule. Summing
up all terms from a to b, the integral becomes,

∫ b

a

f(x)dx =
∆x

3
[f(a) + 4f(a+∆x) + 2f(a+ 2∆x)

+4f(a+ 3∆x) + 2f(a+ 4∆x) + . . .

+2f(b− 2∆x) + 4f(b−∆x) + f(b)]
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Basics of Numerical Analysis

Integration Examples

• Simpson integration algorithm:

/*-------------------------------------------------------------------

double Simpson(double func(double x), double a,

{double x = a, delx = (b - a)/(2.0*n),sum1=0.0,sum2=0.0;

int i;

for(i=1;i<=n;i++)

{

x += delx; sum1 += func(x);

x += delx; sum2 += func(x);

}

return(delx*(func(a)+4*sum1+2*sum2-func(b))/3.0);

}

/*-------------------------------------------------------------------
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Basics of Numerical Analysis

Integration Examples

• Take the integral of f(x) = x3 by using both Simpson’s
rule for N = 2, 10, 100.

• Compare the results. For small number of intervals
N = 2, 4 . . .

• Hint: For N = 2, 4 . . ., one can do the calculations by
hand.
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Basics of Numerical Analysis
Integration

Examples

• By taking only the first term of the series expansion,
the integral in a small interval x0 −∆x < x < x0 +∆x
becomes,

∫ x0+∆x

x0−∆x

f(x)dx = 2∆xf(x0) +O(∆x3)

and hence full integral is:

∫ b

a

f(x)dx = 2∆x[f(a) + f(b) +

N/2−1
∑

i=1

f(x2i)]

Take the integral of f(x) = x3 by using both Simpson’s
rule and above simplified approximation. Compare the
results.
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Integration Examples

• To calculate an integral,

∫ b

a

f(x)dx =
N−1
∑

i=0

∫ a+(i+1)×∆x

a+i×∆x

f(x)dx

expand the function into Taylor’s series, and take one,
two three . . . terms to obtain new integration formulas.
No restriction on the number of intervals.
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Integration of Ordinary Differentiate Equations

• Many of the processes are most conveniently
formulated in terms of differential equations.

• An ordinary differential equation is an equation
containing one independent and one dependent
variable.

• At least one derivative of the dependent variable with
respect to independent variable must exist.

• Non of the two variable need enter the equation
explicitly.

• If the equation is of such a form that the highest (nth)
derivative determine the order of the differential
equation.
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Integration of Ordinary Differentiate Equations

• the highest (nth) derivative can be expressed as a
function of lower derivatives and dependend and
independent variables.

• It is possible to replace the equation by a system of n
first order equations by use of simple substitution
techniques.
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Integration of Ordinary Differentiate Equations

• One of the most commonly met example is equation of
motion,

d2x

dt2
=

1

m
F (x,

.
x, t)

• which can easily be written as two coupled first order
differential equations:

dx

dt
= v

dv

dt
=

1

m
F (x, v, t)
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Integration of Ordinary Differentiate Equations

• In some cases the system in consideration can be
explained in terms of coupled first order differential
equations.

dx1

dt
= F1(x1, x2, . . . , xN , t)

dx2

dt
= F2(x1, x2, . . . , xN , t)

dx3

dt
= F3(x1, x2, . . . , xN , t)

...
dxN

dt
= FN(x1, x2, . . . , xN , t)

(4)
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Integration of Ordinary Differentiate Equations

• Hence the discussion of higher order differential
equations or coupled system of differential equations
can be reduced to the solution of first order differential
equations.

• Without loss of generality examination of the equation,

y′ = f(x, y)

give answer to the problem of solutions of higher order
differential equations or systems of differential
equations.
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Integration of Ordinary Differentiate Equations

• The simplest possible solution to the first order
differential equation may be that the derivative of the
dependent variable is replaced by difference equation,

yn+1 = yn +∆x f(xn, yn)

• This method is called Euler’s first order method.

• its accuracy is closely dependent on the choice of ∆x.

• The error is governed by the error of difference
approximation (O(∆x)).
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Integration of Ordinary Differentiate Equations

Euler algorithm

/*-------------------------------------------------

double Euler(double f(double x, double y, double z),\

double x,double y,double dx)

{

/*--------------------- --------------------------

This program uses the Euler method to solve

dy/dx = f(x,y(x))

y_n+1 = y_n + f(x_n,y_n)*dx Error is O(h^2)

-------------------------------------------------*/

return( y + f(x,y)*dx);

}/*End of function Euler */

/*------------------------------------------------*
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Integration of Ordinary Differentiate Equations

• Methods of higher accuracy may be derived but at a
price of calculating function value at many different
points.
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Integration of Ordinary Differentiate Equations

• Runge-Kutta integration of first order diff. equations

yn+1 = yn +∆xf(xn+∆x/2, yn+1/2)

yn+1 = yn +∆x[f(xn, yn) +
∆x

2

df(xn, yn)

dx
+O(∆x2)]

yn+1 ≃ yn +∆xf(xn, yn) +
∆x2

2

df(xn, yn)

dx
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Integration of Ordinary Differentiate Equations

• Forth order Runge-Kutta integration of first order diff.
equations

k1 = ∆xf(xn+, yn)

k2 = ∆xf

(

xn +
∆x

2
, yn +

k1
2

)

k3 = ∆xf

(

xn +
∆x

2
, yn +

k2
2

)

k4 = ∆xf(xn +∆x, yn + k3)

yn+1 = yn +
1

6
(k1 + 2k2 + 2k3 + k4)
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double RungeKutta(double f(double x, double y), \

double x,double y,double h){

/*--------------------------------------------------------

Forth order Runge-Kutta method to solve

dy/dx = f(x,y(x)) Error is O(h^5)

-----------------------------------------------------------

double k1,k2,k3,k4,h2;

h2 = 0.5 * h;

k1 = f(x,y); x += h2;

k2 = f(x,y+k1*h2); k3 = f(x,y+k2*h2);

x += h2; k4 = f(x,y+k3*h);

return(y+h*(k1+2*(k2+k3)+k4)/6.0L);

}/*End of function Runge-Kutta */
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If f(x, y) is a smooth and easily differntiable a very efficient
method of solution can be obtained.
This method depends of the Taylor series expansion of the
desired solution of the differentable equation. Given the
initial value of the dependent variable the solution may be
expanded into Taylor series expansion near the initial point.

yn+1 = yn +
dy

dx

∣

∣

∣

∣

x=xn

∆x+
1

2!

d2y

dx2

∣

∣

∣

∣

x=xn

∆x2 +O(∆x3)
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If the derivatives of the dependent variable is known at the
point xn,starting from the initial values xo, yo iteratively the
solution may be obtained at every point of the space. In
fact, the first derivative is the differential equation itself,

dy

dx
= f(x, y).

If f(x, y) is a differentaible function at the point xn, yn, all of

the higher derivatives may be obtained from the differential

equation itself.
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d2y

dx2
=

d

dx

dy

dx
=

d

dx
f(x, y) =

∂f

∂x
+

∂f

∂y

∂y

∂x
=

∂f

∂x
+

∂f

∂y
f(5)

d3y

dx2
=

∂2f

∂x2
+ 2f

∂2f

∂x∂y
+ f 2∂

2f

∂y2
+

∂f

∂x

∂f

∂y
+ f(

∂f

∂y
)2

...

Given the inital values xo, yo one can integrate the differen-

tial equation from xo to x.
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double RungeKutta(double f(double x, double y), \

double x,double y,double h){

/*--------------------------------------------------------

Forth order Runge-Kutta method to solve

dy/dx = f(x,y(x)) Error is O(h^5)

-----------------------------------------------------------

double k1,k2,k3,k4,h2;

h2 = 0.5 * h;

k1 = f(x,y); x += h2;

k2 = f(x,y+k1*h2); k3 = f(x,y+k2*h2);

x += h2; k4 = f(x,y+k3*h);

return(y+h*(k1+2*(k2+k3)+k4)/6.0L);

}/*End of function Runge-Kutta */
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