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Chaotic Systems
Introduction to chaotic systems

A short list of famous examples of chaotic systems:

• Thermal convection in fluids

• Forced Pendulum

• Nonlinear optical devices

• Nonlinear electrical circuits

• Chemical reactions

• Classical many-body systems

• Particle accelerations

• Biological model of population dynamics
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Chaotic Systems
Introduction to chaotic systems

• The observed chaotic behaviour in time is,

• neither due to external souurces of noice

• nor to an infinite number of degrees of freedom

• nor to the uncertainity associated with quantum
mechanics.

• The actual source of irregularity is the property of the
nonlinear system of seperating initially close
trajectories exponantially fast in a bounded region of
phase space.
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Chaotic Systems
Introduction to chaotic systems

• It is practically impossible to predict the long term
behaviour of chaotic systems.

• In practice one can only fix their initial conditions with
finite accuracy.

• Errors increase exponentially fast since the digits in
irrational numbers are irregularly distributed.

• Hence in chaotic systems the trajectory becomes
unpredictable.
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Chaotic Systems
Introduction to chaotic systems

• All iterative systems with nonlinearity may posses
chaotic behaviour.

• Solution of a differential equation to define a
dynamical sytem

• or an iterative equation represent a path in the
phase space.

• A criterium for whether the path is chaotic or not must
be defined.

• This criterium must be a measure of how close the
next point is.
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Chaotic Systems
Introduction to chaotic systems

• There are basically three methods of identifying the
chaotic behaviour.

• Lyapunov exponent

• Power spectrum

• Correlation function
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Chaotic Systems
Basic Concepts of Chaos

• Fixed point: is a point which is invariant under the
mapping

x∗ = f(x∗)

• Fixed points are also called critical points or
equilibrium points.

• For fixed-point analysis it is necessary to know
whether the fixed points of a system are stable against
small perturbations or not.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of a function f(x)

• If x∗ is chaged to x∗ + ε, then f(x∗) is changed to

f(x∗ + ε) ∼= f(x∗) + εf ′(x∗)

which means that x∗ is a

• stable fixed point if |f ′(x∗) < 1|,
• unstable if |f ′(x∗) > 1|.
• if if |f ′(x∗) = 1|, the fixed point is called marginally

stable.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of a logistic map:

• Consider the map

x = 4λ x (1− x)

,

• this map is called Logistic Map,

• x∗ = 0 and x = 1− 1/(4λ) are the fixed points.

• Logistic map will be studied in detail later.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of differential equations:

• In case of the differential equations a fixed point is a
point where the velocity vector (y•1, y

•

2, . . . , y
•

n
) vanishes.

• As an example consider the harmonic oscillator which
is defined by the Hamiltonian,

H =
1

2
(p2 + q2)

In this case the phase space is a plane (p, q).
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of differential equations:

• The equations of motion are

q• = p

p• = −q

and obviously the only fixed point is,

(p∗, q∗) = (0, 0)

Corresponding oscillator at rest.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of differential equations:

• If the solution is perturbed about this fixed point so that
q → q∗ + ε1 and p → p∗ + ε2, the equation of motion
becomes,

ε•1 = ε2, ε•2 = ε1

Hence,

ε••1 + ε1 = ε••2 + ε2 = 0

Therefore perturbation about the fixed point produces
ossillations about the fixed point.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of van der Pol equation:

• van der Pol equation

x•• + b(x2 − 1)x• + x = 0 b > 0

• by changing variables y = x, z = x• the equation can
be written in the form of two coupled first order
differential equations

y• = z

z• = −b(y2 − 1)z − y

• the fixed point is (z•, y•) = (0, 0) = (z∗, y∗)
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis of van der Pol equation:
•

y = y∗ + ε1, z = z∗ + ε2

• substituting into equations, one finds

ε••1 − bε•1 + ε1 = ε••2 − bε•2 + ε2 = 0 b > 0

• the perturbationns grow exponentially.
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Chaotic Systems
Basic Concepts of Chaos

fixed-point analysis:

• If the system start near the fixed point remains near
fixed point this is called stable fixed point.

• All trajectories starting near the fixed point move away
from it this is called unstable fixed point.
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Chaotic Systems
Attractor

• If there exist trajectories starting from the fixed point
that forms a closed loop about the fixed point this
closed loop is called attractor.

• The solution of van der Pol equation with b = 0.1 is an
example of a attractor.
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Chaotic Systems
Attractor

• Predictable attractor:

• A fixed point attractor:

• A chaotic attractor:

• Limit cycle:
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Chaotic Systems
Attractor

Predictable attractor: represent the behaviour to which a
system settles down or is attracted to a point or a
looping closed cycle.

A fixed point attractor: the system regardless the initial point
always approaches to the same point. Example is a
mass attached to end of a spring in a fractional
environment. It eventually arrives at an equilibrium
point
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Chaotic Systems
Attractor

A chaotic attractor: is represented by an unpredictable
trajectory where a minute difference in starting position
of two initially adjacent points leads to totally
uncorrelated position later in time

Limit cycle: A limit cycle is a closed, periodic trajectory
"isolated" in the sence that no nearly trajectory is also
closed. Limit cycles appear only non-linear,dissipative
systems, i.e., non-linear systems with fractional forces.
Like fixed points limit cycles may be stable and
unstable.

2014-2015 Spring Term Ankara University Department of Computer Engineering – p.19/48



Chaotic Systems - Project I
The Logistic Map

• A one dimensional mapping that has played an
important role in the recent developments is the
Logistic Map.

xn+1 = 4λxn(1− xn) 0 < x0, λ ≤ 1

• For the logistic map, f(x) = 4λx(1− x) and the fixed
points are the solutions of the equation

x∗ = 4λx∗(1− x∗) → x∗ = 0 and x∗ = 1− 1/(4λ)
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Chaotic Systems - Project I
The Logistic Map

• Stability of Logistic Map:

[f(x∗ + ε) ≈ f(x∗) + εf ′(x∗)]

since f ′(x) = 4λ(1− 2x),

1. for λ < 1/4, x∗ = 0 is a stable fixed point.

2. for 1/4 ≤ λ ≤ 3/4 x∗ = 1− 1/(4λ) is stable fixed
point.

3. for 3/4 ≤ λ ≤ 1 the logistic map has no fixed points.
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Chaotic Systems - Project I
The Logistic Map

• For 0 ≤ λ ≤ 1/4 we find that whatever x we start out

with between 0 and1, the sequence of iterates {xn}
generated by the logistic map converges to x∗ = 0. The
stable fixed point x∗ = 0 for λ < 1/4 is therefore an
attractor.

• Similarly for 1/4 < λ < 3/4 we find that, regardless of

the value of x0( 6= 0.1) the sequence {xn} converges to

fixed point x∗ = 1− 1/(4λ). Thus the stable fixed point

x∗ = 1− 1/(4λ) is an attractor for 1/4 < λ < 3/4.
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Chaotic Systems - Project I
The Logistic Map

• For 3/4 ≤ λ ≤ 1 the logistic map has no fixed points.

• For λ = 0.76, after some initial transient that depends
on the initial seed x0, the sequence {xn} settles into a

two cycle oscillations {0.7306, 0.5984, 0.7...}.

• This two-cycle is independent of the seed and thus is
an attractor of period two.
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Chaotic Systems - Project I
The Logistic Map

• For x∗

1 = 0.7306 and x∗

2 = 0.5984

x∗

2 = f(x∗

1) = f(f(x∗

2)) = f 2(x∗

2)

x∗

1 = f(x∗

2) = f(f(x∗

1)) = f 2(x∗

1)

where

f 2(x) = f(f(x)) = 16λ2
[

x− (4λ+ 1)x2 + 8λx3 − 4λx4
]

is called second iterate of f .
Exercise: show that x = f(f(x)) has two solutions
x∗

1 = 0.7306 and x∗

2 = 0.5984
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Chaotic Systems - Project I
The Logistic Map

• Let λn be the value of λ at which the nth period
doubling biturcation occurs.

• Feigenbaum [M.J.Feigenbaum,J.Staf Phys.
1925(1978);21 669(1979)] has established that the
sequence {λn} converges geometrically at a rate given
by,

δ = lim
n→∞

λn − λn−1

λn+1 − λn

= 4.6692016091...

• δ is universal number.
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Chaotic Systems - Project I
The Logistic Map

• The rapid convergence of the sequence of λn values
allows us to estimate λn+1 fairly accurately from λn and
λn+1.

• The sequence {λn} has the limit point
λ∞ = λ∗ = 0.8924864 . . . beyond which the sequence
{xn} of iterates of the logistic map appears to be
chaotic sequence without any periodicities except for
certain windows of λ values. For λ = 0.959, for
instance, a 3-cycle {0.9588, 0.1515, 0.4931} appears.
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Chaotic Systems - Project I
The Logistic Map

Fundamental λ at which λ at which λ at which

period it first appears it becomes all cycles 2nk

unstable become unstable

1 0.25 0.75 0.8925(λ∞)

6(a) 0.9066 0.9076 0.9082

5(a) 0.9346 0.9353 0.9358

3 0.9571 0.9604 0.9624

5(b) 0.9764 0.9765 0.9766

6(b) 0.984379 0.984399 0.984412

4 0.990025 0.990200 0.990300

6(c) 0.994440 0.994446 0.994450

5(c) 0.997565 0.997575 0.997580

6(d) 0.9993958 0.9993963 0.9993965
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Chaotic Systems - Project I
The Logistic Map

Feigenbaum’s δ universality in the sense that

δ = lim
n→∞

λn − λn−1

λn+1 − λn

= 4.6692016091...(1)
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Chaotic Systems - Project II
Projects:

• The period doubling root to chaos applies to all maps
with quadratic maxima.

• Heron map

• Rössler attractor

• Lorentz Atractor

• The Duffing’s oscillator

• The Volterra-Lotka Model
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Chaotic Systems - Project II
Heron map

• The Henon map map is a discrete-time dynamical
system.

• It is one of the most studied examples of dynamical
systems that exhibit chaotic behavior.

• The Henon map takes a point (xn, yn) in the plane and
maps it to a new point
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Chaotic Systems - Project II
Henon map

• Henon map

xn+1 = yn + 1− Ax2

n
(2)

yn+1 = Bxn(3)

• Depending on the initial seed (x0, y0), the sequence

(xn, yn) either settles on to an attractive set or diverges
to infinity.

• The set of all points (xn, yn) which converge onto an
attractor is called the basis of attraction (of that
attractor).
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Chaotic Systems - Project II
Henon map

• The Henon map depends on two parameters, a and b,
which for the canonical Henon map have values of
a = 1.4 and b = 0.3.

• For the canonical values the Henon map is chaotic.

• For other values of a and b the map may be,

• chaotic,

• intermittent,

• or converge to a periodic orbit.
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Chaotic Systems - Project II
Henon map

• For a fixed parameter B = 0.3, as parameter A varied a
sequence of period doubling bifircations can be
observed.

• values of An for A at which period doubling bifurcations
occur are listed below

period 2n An (An − An−1)/(An+1 − An)

2 0.3675

4 0.9125 4.844

8 1.026 4.3269

16 1.051 4.696

32 1.056536 4.636

64 1.05773083 4.7748

128 1.0579808931 4.6696
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Chaotic Systems - Project III
The Rössler attractor

• Otto Rössler designed the Rössler attractor in 1976,
but the originally theoretical equations were later found
to be useful in modeling equilibrium in chemical
reactions.

• The Rössler attractor is the attractor for the Rössler
system of non liner equations.
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Chaotic Systems - Project III
The Rössler attractor

• The defining equations are:

dx

dt
= −y − z

dy

dt
= x+ ay

dz

dt
= b+ z(x− c)

• Rössler studied the chaotic attractor with a = 0.2,
b = 0.2, and c = 5.7, though properties of
a = 0.1, b = 0.1, and c = 14 h ave been more commonly
used since.
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Chaotic Systems - Project IV
The Lorenz attractor

• The Lorenz model has important implications for
climate and weather prediction.

• The model is an explicit statement that planetary and
stellar atmospheres may exhibit a variety of
quasi-periodic regimes that are, although fully
deterministic, subject to abrupt and seemingly random
change.
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Chaotic Systems - Project IV
The Lorenz attractor

• The equations that govern the Lorenz oscillator are:

dx

dt
= σ(y − x)

dy

dt
= x(ρ− z)− y

dz

dt
= xy − βz

σ, ρ, β > 0. For σ = 10, β = 8/3 and ρ is varied. The
system exhibits chaotic behavior for ρ = 28.
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Chaotic Systems - Project IV
The Lorenz attractor

#include<stdio.h>

int main(){//Lorentz Attractor

int i=0,N=1000;

double x0,y0,z0,h,x1,y1,z1;

double sigma=10.0,beta=8.0/3.0,rho=28.0;

x0=0.01; y0=1.2; z0=0.3;h=0.01;

while(i++ < N){

x1=x0+h*(y0-x0)*sigma;

y1=y0+h*((rho-z0)*x0-y0);

z1=z0+h*(x0*y0-beta*z0);

x0=x1;y0=y1; z0=z1;

printf("%d %6.5f %6.5f %6.5f\n",i,x0,y0,z0);

}

}
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Chaotic Systems - Project V
The Duffing’s oscillator

• Duffing’s oscillator

x
′′

+ kx′ + x3 = Bcos(t)

• In terms of two coupled first order differantial
equations:

dx

dt
= v

dv

dt
= Bcos(t)− kx′ + x3

(4)

• k = 10.1 and B = 2, 4, 6, 8, 10, 12, 14, 16
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Chaotic Systems - Project V
The Duffing’s oscillator

#include<stdio.h>

#include<stdlib.h>

#include<math.h>

/* Duffing’s Oscillator

x’’ + k x’ + x^3 = B cos(t)

*/
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Chaotic Systems - Project V
The Duffing’s oscillator

// Duffing’s Oscillator

// x’’ + k x’ + x^3 = B cos(t)

double B = 16; // 2,4,6,8,10,12,14

double k = 10.1; // Spring constant

//Acceleration is calculated

double ax(double x,double v,double t){

return(B * cos(t) - k * v - x*x*x);

}

//Velocity calculated

double vx(double x,double v,double t){

return(v);

}
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Chaotic Systems - Project V
The Duffing’s oscillator

int main(){

double x=1.0,v=0.0; // Initial values of x and v

double dt=0.01; // time step

double t = 0.0; // time

double t_end = 100; // Time limit

double k1,k2,l1,l2; // Runge-Kutta variables
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Chaotic Systems - Project V
The Duffing’s oscillator

printf(" %f %f %f %f \n", t,x,vx);

while(t < t_end){ //If t exceeds the time limit

// Rumge Kutta 2.

k1 = ax(x,v,t) * dt;

l1 = vx(x,v,t) * dt;

k2 = ax(x+l1,v+k1,t) * dt;

l2 = ax(x+l1,v+k1,t) * dt;

// velocity and coordinate at t + dt

v = v + (k1+k2)/2.0;

x = x + (l1+l2)/2.0;

t = t + dt; // Time increased

printf(" %f %f %f %f \n", t,x,v); //Print the results

}return(0);}
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Chaotic Systems - Project IV
The Volterra-Lotka Model

• The equations that govern the Volterra-Lotka model are

dx1

dt
= x1(b12x2 − a1)

dx2

dt
= xx2(a2 − b21x1)

• x2 = a1/b12, x1 = a2/b21 is the unique equilibrium
point
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Chaotic Systems - Project VI
The Volterra-Lotka Model

• The Volterra-Lotka model is a predatory-prey model.

• Phase space of the model can be studied,

dx1 = x1(b12x2 − a1)dt

dx2 = xx2(a2 − b21x1)dt

• which implies,

dx1

dx2

=
x1(b12x2 − a1)

x2(a2 − b21x1)
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Chaotic Systems - Project VI
The Volterra-Lotka Model

• This differential equation, can be integrated
analytically.

•

b12x2 − a1 ln x2 + C = −b21x1 + a2 ln x1

where C is an arbitrary constant.

• The solution defines a family of closed curves in
x1 − x2 plane.

• Small change in the initial condition results in a small
cahange in the final result.
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Chaotic Systems - Project VI
The Volterra-Lotka Model

• The model is self limiting; as the prey populatiomn
increases, ultimately rate of growth decreases because
food is limited.

• Add term in dx2/dt

dx2

dt
= x2(a2 − b21x1 − c22x2)

where c22 is the self limiting term.
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Chaotic Systems - Project II
Exercises

• Investigate experimentally the mapping xn+1 = λsinπxn

with x0 and λ between 0 and 1 as the λ knob is varried.
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