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Random Number Generation

Properties of Random Numbers

• Important desired properties:

• No correlations

• Long periods

• Follow well-defined distribution

• Fast implementation

• Reproductibility

• Uniformity
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Random Number Generation

Generation of Pseudo-Random Numbers

• Randomness is a part of nature:

• radioactive decay,

• positions of the stars,

• intervals between passing individuals or viechiles,

• . . .

• Since computers are working with deterministic rules
true random number generation is imposible.

• Anyone who considers arithmetical methods of
producing random digits is, of course, in a state of sin.

John von Neuman (1951)
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Random Number Generation

Generation Random or of Pseudo-Random Numbers

• Hardware ramdom number generators exist:

• Electrical flicker noise

• Photon emission from a semiconductor

• Software pseudo-random number generators:

• Find some simple deterministic formulas
(pseudo-random number generator) whose results
immitate random numbers.

• Check if this pseudo-random number generator
produce desired properties of random numbers,

• The true chek is to use this pseudo-random number
generator to simulate a physical phenomena.
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Random Number Generation

Generation of Pseudo-Random Numbers

• “Pseudo”, because generating numbers using a known
method removes the potential for true randomness.

• Goal: To produce a sequence of numbers in [0, 1] that
simulates, or imitates, the ideal properties of random
numbers (RN).

• Important considerations in RN routines:

• Fast

• Portable to different computers

• Have sufficiently long cycle

• Replicable

• Closely approximate the ideal statistical properties
of uniformity and independence
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Random Number Generation

Generation of Pseudo-Random Numbers

• Since the formula gives a deterministic relation
between the given integers,

• starting with the same seed result the same
sequence.

• This may seem a disadvantage; Infact this provide
repeatibility, for debugging, comparissons and
testing.

• In order to avoid repeating the same sequence
extra care must be given to choose different initial
value(s) at each run of the same program. The
reasons of running the same program repeatedly
will be discussed in the Monte-Carlo Simulation
section
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Random Number Generation

Commonly Used Simple Pseudo Random Number Algorithms:

• Congruential (Lehmer, 1948)

• Lagged-Fibonacci (Tausworth,1965)

• Referances:

• Numerical Recipes in C

• D.E.Knuth: „ The Art of Programming:
Seminumerical Algorithms“ 3rd ed. (Addison –
Wesley, 1997) Vol. 2, Chapt. 3.3.1

• J.E. Gentle, „Random Number Generation and
Monte Carlo Methods“ (Springer, 2003)
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Random Number Generation

Linear Congruential Generator

One of the most popular algorithm is the Linear
Congruential Generator. Linear Congruential Generator
implemented on most computers which generates a
sequence of pseudo-random numbers according to the
algorithm:

xn+1 = (axn + c)modM(1)

where, xn, M , a and c are integers. x0 is called seed of the

sequence.
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Random Number Generation

Example of congruential RNG

• Park and Miller (1988):

const int M = 2147483647;

const int a = 16807;

int irnd = 77; //seed [0,M)

double rnd;// rnd, [0,1)

irnd = (a * irnd) \% M;

rnd=(double) irnd/(double) M;

print irnd,rnd;
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Random Number Generation

Maximum Period of a Pseudo-random Number Generator

• Since all integers are less than M the sequence must
repeat after at least M − 1 iterations,

• i.e. the maximal period is M − 1.

• if c = 0, x0 = 0 is a fixed point and cannot be used.

• Robert D. Carmichael proved (1910) that,

• one gets the maximal period if M is a Mersenne
prime number and,

• The smallest integer number a for which a(M − 1)
mod M = 1
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Random Number Generation

Maximum Period of a Pseudo-random Number Generator

Mersenne prime numbers

The selection of the values for a, c, and M , and X0

drastically affects the statistical properties and the cycle
length.

Marin Mersenne, 1626

Mq = 2q − 1 q prime(2)

• For 32-bit word computers M = 231 = 12147483647,
which is a prime number, gives long sequence of
random numbers. (Used also for random() and rand().)
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Random Number Generation

Maximum Period of a Pseudo-random Number Generator

• One can use different set of a, c and M .

• An Linear Congruential Generator with parameters a, c
and M has perion length M if and only if,

1. gcd(c,M) = 1;

2. a Mod p = 1) for every prime p dividing M ;

3. a Mod 4 = 1 if M ia a multiple of 4

(a× xk−1 + c) ≤ (2M) (a ∼ xi ∼ (M)),
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Random Number Generation

Maximum Period of a Pseudo-random Number Generator

Some sets of good a, c and M combinations are given by
the table:

M a c

259200 7141 54773

134456 8121 28411

243000 4561 51349

714025 1366 150889

Table 1: Some good M , a and c combinations
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Random Number Generation

Simple Linear Congruential Generator

#include <stdio.h>

#include <math.h>

int main(){

int i;

long int x =1237,ic=417,ia=117,M=4717;

float r;

for ( i=1; i<=10; i++ ){

x = ( x * ic + ia ) % M ;

r = (double) x / (double) M;

printf("%3d %7.5f\n ",i,r);

}

return(0);

}
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Random Number Generation

Using System Provided Random Numbers

• C programming language provides a random number
generator based on Linear Congruential algorithm with

M = 231 − 1.

• This generator can be activated by calling either one of
these programs:

• random()

• rand()

• Both random() and rand() use a fixed seed.

• Sequence of random numbers are generated within
the calling program and subprograms.

• When the same program is activated again the same
sequence of random numbers can be reproduced.
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Random Number Generation

Using System Provided Random Numbers

• Changing random number sequence is possible by
calling the program,

• srandom(unsigned long)

• srand(unsigned long)

• srand() takes a long integer to initiate the random
nember sequence.

• In order to further randomize the initial seed one can
use the time() function which is defined in the hader file
time.h

• After including time.h into your program, to set a new
random number seed each time program is runed:

• srand(time(NULL));
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Random Number Generation

Using System Provided Random Numbers

Using srand, srandom(), random() and rand()

//This program Produce integer random numbers

//between $0$ and $2^{31}-1$

#include <stdio.h>

int main(){

int i;

srandom(127717); //set seed

for ( i=0; i < 10; i++ )

printf(" %d %d \n ",i,rand());

srandom(127717); //set seed

for ( i=0; i < 10; i++ )

printf(" %d %d \n ",i,random());

}
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Random Number Generation

Using System Provided Random Numbers

• Integer random numbers have some limitted use.

• RAND_MAX which is the largest possible number to
be produced, is provided in both stdlib.h and math.h

• Dividing rand() or random() by this number one can
obtain linearly distributed random numbers in the
range [0, 1)
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Random Number Generation

Using System Provided Random Numbers

//This program Produce integer random numbers

//and random numbers between $0$ and $1$

#include <stdio.h>

#include <stdlib.h>

#include <time.h>

#define frand() ((double)random()/(double)RAND_MAX

int main(){

int i;

srandom(time(NULL)); //set seed

for ( i=0; i < 10; i++ ){

printf(" %d %d ",i,random());

printf("% f ",(double)rand()/(double)RAND_MAX);

printf(" %f \n ",frand());

}

}
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Random Number Generation

A set of integer random numbers (rand())

1553815959 556437479 573295497 339398630

207228801 2090041015 68418236 708757024

891197014 1893431560 688619835 1157187795

1463216227 188270770 1769319866 988937994

1163497225 64224048 1500957925 1945850552

129706340 769155680 1051505658 35530749

121144548 292193613 31819671 1994671593

476584321 289859384 1312514152 137185691

447083025 2030400280 846296863 1885809649

2071902895 654311826 1972957647 914715099
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Random Number Generation

A set of floating point random numbers

0.17664 0.04163 0.00099 0.00000

0.48722 0.09230 0.09133 0.36460

0.83129 0.23318 0.45443 0.52675

0.05083 0.55609 0.56806 0.93173

0.29820 0.25236 0.01891 0.76705

0.51543 0.92026 0.53156 0.87598

0.57061 0.88631 0.18842 0.81043

0.11835 0.98489 0.81527 0.07677

0.25331 0.10092 0.78448 0.89391

0.68092 0.67888 0.37838 0.01984
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Random Number Generation

Tests for random numbers

• It is wise to test a random-number generator to obtain
a numerical measure of its uniformity and randomness
before using in any scienticic project.

• In the litearure there are various examples of
ambaresment due to some unexpected behaviour of
the random numbers.

• In fact, some tests are simple enough to perform
before actually using the random number generator.

• Even the following list of test are not complete,

• Best test is actual calculation of a known quantity.
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Random Number Generation

Tests for random numbers

There are a large class of tests. The most elementary test
is to check if the random number generator is a biased one
or not.
A list of simple random number tests:

• Average is 0.5

• Check distribution

• Correlations should vanish

• n-cube-test

• χ2 test: partial sums follow a Gaussian

• Average of each bit is 0.5

• Spectral test: no peaks in Fourier transform
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Random Number Generation

Tests for random numbers

• The most obvious test for randomness and uniformity
is to look at the numbers generated.

• Observe that

• wether they all lie between 0 and 1,

• they appear to differ from each other, and

• there is no obvious pattern (like 0.3333).
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Random Number Generation

Tests for random numbers
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Random Number Generation

Tests for random numbers

• Average test:

• Generate uniformly distributed random numbers in
the range 0 and 1.

• Sum all numbers and sum the squares of the
random numbers.

• Calculate the average and the standart deviation,

< r > =
1

N

N∑
i=1

ri

sigma2 =
1

N

N∑
i=1

(ri− < r >)22014-2015 Fall Term Ankara University Department of Computer Engineering – p.27/46



Random Number Generation

Tests for random numbers

• Distribution Test

• calculate the index according to the value of the
random number, sampled from a uniform
distribution between 0 and 1 .

• Calculate the range and add one to the range.

ind = NBins × ri

Distribution[ind] = Distribution[ind] + 1

• Repeat the same process as many times as
possible.
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Random Number Generation
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Figure 1: Good and bad random number genera-

tors.
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Random Number Generation

Tests for random numbers

• Square Test

• Step 1: Calculate two consequetive random
numbers ri and ri+1

• Step 2: Plot x versus y, x = ri and y = ri+1

• Step 3: Repeat starting from step1.

• If there exist short range correlations in the sequence it
will appear as paralel lines on the plot.
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Random Number Generation
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Figure 2: Good and bad random number genera-

tors.
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Random Number Generation

Usually one requires random numbers in a certain range.
Most of the applications require random numbers in the
range 0 and 1. Once uniformly distributed random integers
are obtained, uniformly distributed random numbers in the
interval [0, 1) is obtained by dividing the random integer
with the largest number M ,

rn =
xn

M
for 0 ≤ rn < 1(3)

if one require both limits to be included, then

rn =
xn

M − 1
for 0 ≤ rn ≤ 1(4)

will produce uniformly distributed random numbers in the

closed interval, [0, 1].2014-2015 Fall Term Ankara University Department of Computer Engineering – p.32/46



Random Number Generation

Changing the Interval of the Uniform Random Numbers

• It is easy to change the interval of the created uniform
random numbers.

• This is simply done by choosing a new variable which
takes values within the desired interval.

• If random numbers ri’s are created in the interval [0, 1),
then this interval can be changed to [A,B) by choosing
a new random variable x,

xn = (B − A)× rn + A 0 ≤ rn < 1(5)

where A ≤ xn < B.
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Random Number Generation

Integer random numbers

• If random numbers ri’s are created in the interval [0, 1),
random sequence of integers, 0’s and 1’s can be
created.

•

irn = (int)(rn + 0.5)

will give 0 for r < 0.5 and 1 for r > 0.5.

• Since r is uniformly distributed, with equal
probablility 0’s and 1’s are created.

• Similarly, integer random numbers consist of only 1
and −1 can be created.

•

irn = 2× (int)(rn + 0.5)− 1
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Random Number Generation

Integer random numbers

• Random sequences of 0 (1) and 1 (−1) are used in
simulations where the individual units can take only
two values.

• This very common even in the modern society since
many decissions require yes or no questions.
Something is either on or off also a very common in
daily life.
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Random Number Generation

Changing the interval of the uniform random numbers

• In some situations integer random numbers are
necessary.

• If the range of the integer random numbers is [0,M)

• For uniformly distributed random integer values
between 0 and N − 1 one can use the integer random
numbers generated by using the relation given in Eq.
(1),

irn = xn%N where 0 ≤ xn < M(6)

here irn takes all values 0, 1, . . . , N − 1.
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Random Number Generation

Pseudo Random Numbers II
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Random Number Generation

Properties of Random Numbers

• Random Numbers, ri, must be independently drawn
from a distribution with :

∫
−∞

∞p(x) dx = 1 and p(x) > 0.

• Examples:

• Homogeneous (linear)

• Gaussian,

• Poisson,

• Arbitrary distribution.

• . . .
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Random Number Generation

Random Numbers Sampled According to a Desired Distribution

Given a uniform distribution ofrandom numbers, it is easy
to sample any distribution specified by an integrable
function by simple change of variables. If we define

y(x) =

∫ x

dx′P (x′) then

dy

dx
= P (x)(7)

Then we may write,

∫
dxP (x)f(x) =

∫
dyf(x(y))(8)

Thus when the variable y is sampled uniformly the inverse

function x(y) is distributed according to desired probablity
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Random Number Generation

Examples:

P (x) = 2x

∫ 1

0

f(x)2xdx =

∫ 1

0

f(x)d(x2) =

∫ 1

0

f(y1/2)dy(9)

so that sampling values of y uniformly distributed on (0,1)

yields values of x = y1/2 distributed with P (x) = 2x on (0, 1)
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Random Number Generation

Exponantial Distribution

Consider the integral,

I =

∫
∞

0

dxe−xg(x)(10)

the most natural choise of weight is, e−x then the
distribution can be obtained,

dy = dxe−x

y =

∫ x

0

e−x′

dx′ = 1− e−x

x = − ln(1− y)(11)
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Random Number Generation

random Numbers with Normal Distribution

Similarly Gaussian distribution for which number of points
in a differential area is proportional to

e−
1
2
(x2+y2)dxdy(12)

In terms of polar coordinates r = (x2 + y2)1/2 , θ = arctan y
x

the distribution is,

e−
1
2
r2rdrdθ(13)

if u = 1/′r2 the distribution is

e−ududθ(14)
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Random Number Generation

If we generate u between 0 and ∞ with an exponential
distribution and θ uniformly 0 and 2π then the
corresponding values of

x = (2u)1/2cosθ

y = (2u)1/2sinθ(15)

will distribute normally. Or if ξ1 and ξ2 are uniformly
distributed random numbers,

x = (−2 ln ξ1)
1/2cos(2πξ2)

y = (−2 ln ξ1)
1/2sin(2πξ2)(16)

gives normally distributed random numbers.
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Random Number Generation

Random Numbers with Arbitrary Distribution

In above examples the weight function is choosen such
that the exact integration was possible. If exact integration
is not possible still there are some methods to solve this
problem.

i) Let us imagine tabulating the values X(j) for which the
incomplete integral of w takes on a series of uniformly

spaced values Y (j) ≡ j/N j = 0, 1, . . . , N That spans the
interval (0,1). Thus,

y(j) =
j

N
=

∫ x(j)

0

dx′W (x′)(17)
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Random Number Generation

Through simple discritization,

y(j+1)
−y(j)

x(j+1)
−x(j) = W (x(j)) y(j+1) − y(j) = 1

N

x(j+1) = x(j) + 1
NW (x(j))

(18)

a convenient initial value may be x(0) = 0
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Random Number Generation

Von Neumann Rejection Method:

Let F(x) be a positive function everywhere greater than

or equal to a probablity distribution P(x) to be sampled. If

points are generated uniformly in the plane below F(x) and

only those which are also below P(x) are accepted, then

accepted points will be distributed according to P(x). Op-

erationally, a random variable xi is selected with probablity

proportional to F(x) (i.e. P(x)=F(x)/
∫

!F(x)) and a random

number ξ uniformly distributed on the interval (0,1) is gen-

erated. The value xi is accepted if P (xi)/F (xi) > ξ; other-

wise it is rejected. Clearly this procedure is only efficient if

one can find a function F(x) which can be efficiently sam-
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