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This chapter starts with the area problems and uses

them to formulate the idea of a definite integral, which

is the basic concept of integral calculus.
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We begin by attempting to solve the area 

problem: 

Find the area of the region that lies under the curve

from a to b.
𝑦 = 𝑓 𝑥
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This means that , illustrated in Figure 1, is bounded by 

the graph of a continuous function

Figure 1

𝑓 𝑤ℎ𝑒𝑟𝑒 𝑓 𝑥 ≥ 0 , 𝑡ℎ𝑒 𝑣𝑒𝑟𝑡𝑖𝑐𝑎𝑙 𝑙𝑖𝑛𝑒𝑠 𝑥 = 𝑎 𝑎𝑛𝑑 𝑥
= 𝑏, 𝑎𝑛𝑑 𝑡ℎ𝑒 𝑥 − 𝑎𝑥𝑖𝑠.

Figure 1
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In trying to solve the area problem we have to 

ask ourselves: What is the meaning of the word

area? This question is easy to answer for 

regions with straight sides. 

Figure 2
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 For a rectangle, the area is defined as the product of 
the length and the width. 

 The area of a triangle is half the base times the 
height. 

 The area of a polygon is found by dividing it into 
triangles (as in Figure 2) and adding the areas of the 
triangles.
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However, it isn’t so easy to find the area of a

region with curved sides. We all have an intuitive idea

of what the area of a region is.

But part of the area problem is to make this

intuitive idea precise by giving an exact

definition of area.
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We first approximate the region by rectangles and 

then we take the limit of the areas of these rectangles 

as we increase the number of rectangles. 

 The following example illustrates the procedure.
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Example-1

Use rectangles to estimate the area under the parabola 

from 0 to 1.

(the parabolic region S illustrated in Figure 3).

Figure 3

𝑦 = 𝑥2
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Solution

We first notice that the area of S must be somewhere 
between 0 and 1 because S is contained in a square 
with side length 1, but we can certainly do better than 
that.
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Figure 4
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Figure 5
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Figure 6
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From the values in the table in Example 1, it looks as if 

is approaching as n increases. 

We confirm this in the next example.

𝑅𝑛 1

3
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Example-2

For the region S in Example 1, show that the sum of the 
areas of the upper approximating rectangles 
approaches , that is1

3

lim
𝑛→∞

𝑅𝑛 =
1

3
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Solution

is the sum of the areas of the n rectangles in Figure 
7.

𝑅𝑛

Figure 7
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From Figures 8 and 9 it appears that, as n increases, 
both and become better and better
approximations to the area of S. 

Therefore, we define the area A to be the limit of the

sums of the areas of the approximating rectangles, 
that is,

𝑅𝑛𝐿𝑛

𝐴 = lim
𝑛→∞

𝑅𝑛 = lim
𝑛→∞

𝐿𝑛 =
1

3
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Let’s apply the idea of Examples 1 and 2 to the more 
general region S of Figure 1. We start by subdividing S 
into n strips of equal width as in Figure 
10. 

S1, S2, … , 𝑆𝑛

Figure 10
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The width of the interval [𝑎, 𝑏] is 𝑏 − 𝑎 , so the width of 
each of the n strips is

Δ𝑥 =
𝑏 − 𝑎

𝑛
.

These strips divide the interval [a, b] into n subintervals

𝑥0, 𝑥1 , 𝑥1, 𝑥2 , 𝑥2, 𝑥3 , …, 𝑥𝑛−1, 𝑥𝑛

where 𝑥0 = 𝑎 and 𝑥𝑛 = 𝑏.
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The right endpoints of the subintervals are

𝑥1 = 𝑎 + Δ𝑥, 𝑥2 = 𝑎 + 2Δ𝑥, 𝑥3 = 𝑎 + 3Δ𝑥, …
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Let’s approximate the i th strip 𝑆𝑖 by a rectangle with width
Δ𝑥 and height 𝑓(𝑥𝑖), which is the value of 𝑓 at the right 
endpoint (see Figure 11). 

Figure 11
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Then the area of the i th rectangle is 𝑓(𝑥𝑖)Δ𝑥. 

What we think of intuitively as the area of S is approximated 
by the sum of the areas of these rectangles, which is

𝑅𝑛 = 𝑓 𝑥1 Δ𝑥 + 𝑓 𝑥2 Δ𝑥 + ⋯ + 𝑓 𝑥𝑛 Δ𝑥

Figure 12 shows this approximation for n 2, 4, 8, and 12. 
Notice that this approximation appears to become better 
and better as the number of strips increases, that is, as 𝑛 →
∞.
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Figure 12
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Therefore, we define the area 𝐴 of the region 𝑆 in the 
following way.

Definition 1. The area 𝐴 of the region 𝑆 that lies under the 
graph of the continuous function is the limit of the sum of 
the areas of approximating rectangles:

𝐴 = lim
𝑛→∞

𝑅𝑛 = lim
𝑛→∞

[ 𝑓 𝑥1 Δ𝑥 + 𝑓 𝑥2 Δ𝑥 + ⋯ + 𝑓 𝑥𝑛 Δ𝑥] (1)

It can be proved that the limit in Definition 1 always exists, 
since we are assuming that is continuous. 
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It can also be shown that we get the same value if we use left 
endpoints:
𝐴 = lim

𝑛→∞
𝐿𝑛

= lim
𝑛→∞

[ 𝑓 𝑥0 Δ𝑥 + 𝑓 𝑥1 Δ𝑥 + ⋯ + 𝑓 𝑥𝑛−1 Δ𝑥] (2)

In fact, instead of using left endpoints or right endpoints, we 
could take the height of the i th rectangle to be the value of 
𝑓 at any number 𝑥𝑖

∗ in the i th subinterval [𝑥𝑖−1, 𝑥𝑖]. 

We call the numbers 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ the sample points.
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Figure 13 shows approximating rectangles when the sample 
points are not chosen to be endpoints. 

Figure 13
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So a more general expression for the area of 𝑆 is

𝐴 = lim
𝑛→∞

[ 𝑓 𝑥1
∗ Δ𝑥 + 𝑓 𝑥2

∗ Δ𝑥 + ⋯ + 𝑓 𝑥𝑛
∗ Δ𝑥] (3)

We often use sigma notation to write sums with many terms 
more compactly. For instance,

෍

𝑖=1

𝑛

𝑓 𝑥𝑖 Δ𝑥 = 𝑓 𝑥1 Δ𝑥 + 𝑓 𝑥2 Δ𝑥 + ⋯ + 𝑓 𝑥𝑛 Δ𝑥
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So the expressions for area in Equations 1, 2, and 3 can be 
written as follows:

𝐴 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖)Δ𝑥

𝐴 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖−1)Δ𝑥

𝐴 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖
∗)Δ𝑥
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Example –3

Let A be the area of the region that lies under the graph of
𝑓 𝑥 = 𝑒−𝑥 between 𝑥 = 0 and 𝑥 = 2.

(a) Using right endpoints, find an expression for A as a limit. 
Do not evaluate the limit.

(b) Estimate the area by taking the sample points to be
midpoints and using four subintervals and then ten 
subintervals.
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Solution
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We saw in Section 1.1 that a limit of the form

lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖
∗)Δ𝑥 = lim

𝑛→∞
[ 𝑓 𝑥1

∗ Δ𝑥 + 𝑓 𝑥2
∗ Δ𝑥 + ⋯ + 𝑓 𝑥𝑛

∗ Δ𝑥] (1)

arises when we compute an area.
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We also point out that limits of the form (1) 

also arise in finding 

 lengths of curves, 

 volumes of solids,

 centers of mass, 

 force due to water pressure,

and work, as well as other quantities. 

We therefore give this type of limit a special name and 
notation.
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Definition 2 (Definite Integral)

If 𝑓 is a continuous function defined for 𝑎 ≤ 𝑥 ≤ 𝑏, we
divide the interval [𝑎, 𝑏] into 𝑛 subintervals of equal width

Δ𝑥 =
𝑏−𝑎

𝑛
.  We let 𝑥0 = 𝑎 , 𝑥1, 𝑥2, … , 𝑥𝑛(= 𝑏) be the 

endpoints of these subintervals and we let 𝑥1
∗, 𝑥2

∗, … , 𝑥𝑛
∗ be 

any sample points in these subintervals, so 𝑥𝑖
∗lies in the i th

subinterval [𝑥𝑖−1, 𝑥𝑖]. Then the definite integral of 𝒇 from 
𝒂 to 𝒃 is

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓 𝑥𝑖
∗ Δ𝑥 (2)
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Because we have assumed that 𝑓 is continuous, it can be 
proved that the limit in Definition 2 always exists and gives 
the same value no matter how we choose the sample

points 𝑥𝑖
∗. 

If we take the sample points to be right endpoints, then

𝑥𝑖
∗ = 𝑥𝑖 and the definition of an integral becomes

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖)Δ𝑥 (3)

If we choose the sample points to be left endpoints, then
𝑥𝑖

∗ = 𝑥𝑖−1 and the definition becomes

න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
𝑛→∞

෍

𝑖=1

𝑛

𝑓(𝑥𝑖−1)Δ𝑥
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Alternatively, we could choose 𝑥𝑖
∗ to be the midpoint of the 

subinterval or any other number between 𝑥𝑖−1and 𝑥𝑖 .

Although most of the functions that we encounter are 
continuous, the limit in Definition 2 also exists if has a finite 
number of removable or jump discontinuities (but not

infinite discontinuities.) So we can also define the definite 
integral for such functions.
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Note 1

The symbol ∫ was introduced by Leibniz and is called an
integral sign. It is an elongated S and was chosen because an

integral is a limit of sums. In the notation ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥, 𝑓(𝑥) is

called the integrand and 𝑎 and 𝑏 are called the limits of
integration; 𝑎 is the lower limit and is 𝑏 the upper limit. The

symbol 𝑑𝑥 has no official meaning by itself; ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥 is all

one symbol. The procedure of calculating an integral is
called integration.
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Note 2

The definite integral ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥 is a number; it does not

depend on 𝑥 . In fact, we could use any letter in place of
𝑥 without changing the value of the integral:

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = න
𝑎

𝑏

𝑓 𝑡 𝑑𝑡 = න
𝑎

𝑏

𝑓 𝑟 𝑑𝑟
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Note 3

The sum

that occurs in Definition 2 is called a Riemann sum after the 
German mathematician Bernhard Riemann (1826–1866). 
We know that if 𝑓 happens to be positive, then the Riemann 
sum can be interpreted as a sum of areas of approximating 
rectangles (see Figure 1). By comparing Definition 2 with 
the definition of area in Section 1.1, we see that the definite 

integral ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥 can be interpreted as the area under the 

curve 𝑦 = 𝑓 𝑥 from 𝑎 to 𝑏.

෍

𝑖=1

𝑛

𝑓 𝑥𝑖
∗ Δ𝑥
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If 𝑓 takes on both positive and negative values, as in
Figure 3, then the Riemann sum is the sum of the
areas of the rectangles that lie above the 𝑥-axis and
the negatives of the areas of the rectangles that lie
below the 𝑥-axis.
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න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥 = 𝐴1 − 𝐴2

where 𝐴1 is the area of the region above the 𝑥-axis and
below the graph of 𝑓, and 𝐴2 is the area of the region below
the 𝑥-axis and above the graph of 𝑓.

When we take the limit of such
Riemann sums, we get the
situation illustrated in Figure 4.
A definite integral can be
interpreted as a net area, that is,
a difference of areas:
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Note 4

In the spirit of the precise definition of the limit of a
function, we can write the precise meaning of the limit that
defines the integral in Definition 2 as follows:

For every number 𝜀 > 0 there is an integer 𝑁 such that

න
𝑎

𝑏

𝑓(𝑥) 𝑑𝑥 − ෍

𝑖=1

𝑛

𝑓 𝑥𝑖
∗ Δ𝑥 < 𝜀

for every integer 𝑛 > 𝑁 and for every choice of 𝑥𝑖
∗ in

[𝑥𝑖−1, 𝑥𝑖].
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Note 5

Although we have defined ∫𝑎

𝑏
𝑓(𝑥) 𝑑𝑥 by dividing [𝑎, 𝑏] into

subintervals of equal width, there are situations in which it
is advantageous to work with subintervals of unequal width.

And there are methods for numerical integration that take
advantage of unequal subintervals.

If the subinterval widths are Δ𝑥1, Δ𝑥2, …, Δ𝑥𝑛 we have to
ensure that all these widths approach 0 in the limiting
process. This happens if the largest width, max Δ𝑥𝑖 ,
approaches 0. So in this case the definition of a definite
integral becomes

න
𝑎

𝑏

𝑓 𝑥 𝑑𝑥 = lim
max Δ𝑥𝑖→0

෍

𝑖=1

𝑛

𝑓 𝑥𝑖
∗ Δ𝑥
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Example-1

Express

as an integral on the interval 0, 𝜋 .

lim
𝑛→∞

σ𝑖=1
𝑛 ( 𝑥𝑖

3 + 𝑥𝑖 sin 𝑥𝑖)Δ𝑥
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When we use the definition to evaluate a definite
integral, we need to know how to work with sums.

The following three equations give formulas for sums of
powers of positive integers.

Equation 4 may be familiar to you from a course in
algebra. Equations 5 and 6 were discussed in Section 1.1.
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෍

𝑖=1

𝑛

𝑖 =
𝑛 (𝑛 + 1)

2
(4)

෍

𝑖=1

𝑛

𝑖2 =
𝑛 𝑛 + 1 (2𝑛 + 1)

6
(5)

෍

𝑖=1

𝑛

𝑖3 =
𝑛 (𝑛 + 1)

2

2

(6)
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The remaining formulas are simple rules for working with sigma notation:

෍

𝑖=1

𝑛

𝑐 = 𝑛𝑐 (7)

෍

𝑖=1

𝑛

𝑐𝑎𝑖 = 𝑐 ෍

𝑖=1

𝑛

𝑎𝑖 (8)

෍

𝑖=1

𝑛

(𝑎𝑖 + 𝑏𝑖) = ෍

𝑖=1

𝑛

𝑎𝑖 + ෍

𝑖=1

𝑛

𝑏𝑖 (9)

෍

𝑖=1

𝑛

(𝑎𝑖 − 𝑏𝑖) = ෍

𝑖=1

𝑛

𝑎𝑖 − ෍

𝑖=1

𝑛

𝑏𝑖 (10)
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Example-2

(a) Evaluate the Riemann sum for 𝑓 𝑥 = 𝑥3 − 6𝑥 taking the 
sample points to be right endpoints and 𝑎 = 0, b =
3 and n = 6.

(b) Evaluate ∫0

3
𝑥3 − 6𝑥 𝑑𝑥.
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Solution

(a)

Notice that 𝑓 is not a positive
function and so the Riemann
sum does not represent a sum
of areas of rectangles. But it
does represent the sum of the
areas of the above the x-axis
minus the sum of the areas of
below the x-axis in Figure 5.
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(b)

This integral can’t be interpreted as an area
because 𝑓 takes on both positive and negative
values. But it can be interpreted as the
difference of areas , 𝐴1 − 𝐴2 where 𝐴1 and 𝐴2

are shown in Figure 6.
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Figure 7 illustrates the calculation by showing the positive 
and negative terms in the right Riemann sum 𝑅𝑛 for 𝑛 = 40. 
The values in the table show the Riemann sums approaching 
the exact value of the integral, -6.75, as n → ∞.
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Example-3

Set up an expression for ∫1

3
𝑒𝑥 𝑑𝑥 as a limit of sums.

Solution
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Example-4
Evaluate the following integrals by interpreting each in terms of 
areas.

(a) ∫0

1
1 − 𝑥2 𝑑𝑥 (b)∫0

3
(𝑥 − 1) 𝑑𝑥

Solution

Figure 10
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We often choose the sample point 𝑥𝑖
∗ to be the right

endpoint of the ith subinterval because it is convenient
for computing the limit. But if the purpose is to find an
approximation to an integral, it is usually better to
choose 𝑥𝑖

∗ to be the midpoint of the interval, which we

denote by ഥ𝑥𝑖 . Any Riemann sum is an approximation to
an integral, but if we use midpoints we get the following
approximation.
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Midpoint Rule

න

𝑎

𝑏

𝑓(𝑥) 𝑑𝑥 ≈ ෍

𝑖=1

𝑛

𝑓( ഥ𝑥𝑖)Δ𝑥 = Δ𝑥[𝑓 𝑥1 + 𝑓 𝑥2 + ⋯ + 𝑓 𝑥𝑛

where

Δ𝑥 =
𝑏 − 𝑎

𝑛
and

ഥ𝑥𝑖 =
1

2
𝑥𝑖−1 + 𝑥𝑖 = 𝑚𝑖𝑑𝑝𝑜𝑖𝑛𝑡 𝑜𝑓 [𝑥𝑖−1, 𝑥𝑖]
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Example-5
Use the Midpoint Rule with n = 5 to approximate

න
1

2 1

𝑥
𝑑𝑥

Solution
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When we defined the definite integral ∫𝑎

𝑏
𝑓 𝑥 𝑑𝑥, we

implicitly assumed that 𝑎 < 𝑏. But the definition as a limit
of Riemann sums makes sense even if 𝑎 > 𝑏. Notice that if

we reverse 𝑎 and 𝑏, then Δ𝑥 changes from Τ(𝑏−𝑎)
𝑛 to

Τ(𝑎−𝑏)
𝑛 . Therefore

න

𝑏

𝑎

𝑓 𝑥 𝑑𝑥 = − න

𝑎

𝑏

𝑓 𝑥 𝑑𝑥
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If 𝑎 = 𝑏 , then Δ𝑥 = 0 and so

We now develop some basic properties of integrals that will 
help us to evaluate integrals in a simple manner. We assume 
that 𝑓 and 𝑔 are continuous functions.

න

𝑎

𝑎

𝑓 𝑥 𝑑𝑥 = 0
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Example-6

Use the properties of integrals to evaluate

න
0

1

4 + 3𝑥2 𝑑𝑥.
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Example-7

If it is known that ∫0

10
𝑓 𝑥 𝑑𝑥 = 17 and ∫0

8
𝑓 𝑥 𝑑𝑥 = 12,

find∫8

10
𝑓 𝑥 𝑑𝑥.
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For Property 8, note that if 𝑓 is continuous we could take 𝑚 and 𝑀
to be the absolute minimum and maximum values of 𝑓 on the
inteval [𝑎, 𝑏].

Example-8

Use Property 8 to estimate ∫0

1
𝑒−𝑥2

𝑑𝑥.

Solution
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