3.1 Improper Integrals

Up to now, definite integrals have been required to have two properties.

1. The domain of the integration $[a, b]$ finite,
2. The range of the integrand does not have an infinite discontinuity.
In this section we extend the concept of a definite integral to the case where the interval is infinite and also to the case where f (intergrand) has an infinite discontinuity in $[a, b]$. In either case the integral is called an improper integral.

Type 1: Infinite Intervals

FIGURE 1

Consider the infinite region S that lies under the curve $y=1 / x^{2}$, above the $x-$ axis, and to the right of the line $x=1$. You might think that, since S is infinite in extent, its area must be infinite, but let's take a closer look. The area of the part of that lies to the left of the line $x=t$ (shaded in Figure 1) is

$$
A(t)=\int_{1}^{t} \frac{1}{x^{2}} d x=\left.\frac{-1}{x}\right|_{1} ^{t}=1-\frac{1}{t}
$$

Notice that $A(t)<1$ no matter how large t is chosen.

We also observe that

$$
\lim _{t \rightarrow \infty} A(t)=\lim _{t \rightarrow \infty}\left(1-\frac{1}{t}\right)=1
$$

The area of the shaded region approaches 1 as $t \rightarrow \infty$ (see Figure 2), so we say that the area of the infinite region S is equal to 1 and we write

$$
\int_{1}^{\infty} \frac{1}{x^{2}} d x=\lim _{t \rightarrow \infty} \int_{1}^{t} \frac{1}{x^{2}} d x=1
$$

FIGURE 2

Using this example as a guide, we define the integral of f (not necessarily a positive function) over an infinite interval as the limit of integrals over finite intervals.

1 Definition of an Improper Integral of Type 1
(a) If $\int_{a}^{t} f(x) d x$ exists for every number $t \geqslant a$, then

$$
\int_{a}^{\infty} f(x) d x=\lim _{t \rightarrow \infty} \int_{a}^{t} f(x) d x
$$

provided this limit exists (as a finite number).
(b) If $\int_{t}^{b} f(x) d x$ exists for every number $t \leqslant b$, then

$$
\int_{-\infty}^{b} f(x) d x=\lim _{t \rightarrow-\infty} \int_{t}^{b} f(x) d x
$$

provided this limit exists (as a finite number).
The improper integrals $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{b} f(x) d x$ are called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If both $\int_{a}^{\infty} f(x) d x$ and $\int_{-\infty}^{a} f(x) d x$ are convergent, then we define

$$
\int_{-\infty}^{\infty} f(x) d x=\int_{-\infty}^{a} f(x) d x+\int_{a}^{\infty} f(x) d x
$$

In part (c) any real number a can be used (see Exercise 74).

Now let's solve some examples!!!

Type 2: Discontinuous Integrands

Suppose that f is a positive continuous function defined on a finite interval $[a, b)$ but has a vertical asymptote at b. Let S be the unbounded region under the graph of f and above the x-axis between a and b. (For Type 1 integrals, the regions extended indefinitely in a horizontal direction. Here the region is infinite in a vertical direction.) The area of the part of S between a and t (the shaded region in Figure) is

$$
A=\int_{a}^{t} f(x) d x
$$

If it happens that $A(t)$ approaches a definite number A as $t \rightarrow b^{-}$, then we say that the area of the region S is A and we write

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

3 Definition of an Improper Integral of Type 2

(a) If f is continuous on $[a, b)$ and is discontinuous at b, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow b^{-}} \int_{a}^{t} f(x) d x
$$

if this limit exists (as a finite number).
(b) If f is continuous on ($a, b]$ and is discontinuous at a, then

$$
\int_{a}^{b} f(x) d x=\lim _{t \rightarrow a^{+}} \int_{t}^{b} f(x) d x
$$

if this limit exists (as a finite number).
The improper integral $\int_{a}^{b} f(x) d x$ is called convergent if the corresponding limit exists and divergent if the limit does not exist.
(c) If f has a discontinuity at c, where $a<c<b$, and both $\int_{a}^{c} f(x) d x$ and $\int_{c}^{b} f(x) d x$ are convergent, then we define

$$
\int_{a}^{b} f(x) d x=\int_{a}^{c} f(x) d x+\int_{c}^{b} f(x) d x
$$

These figures illustrates the definition

Now let's solve some examples!!!

Definition of an Improper Integral of Type 3

If an integral has the properties of both Type 1 and 2 , then it is said that the integral is improper integral of Type 3.

