The volume *V* of a circular cylinder depends on its radius *r* and its height *h*. In fact, we know that $V = \pi r^2 h$. We say that *V* is a function of *r* and *h*, and we write $V(r, h) = \pi r^2 h$.

Definition

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by f(x, y). The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y): (x, y) \in D\}$. We often write z = f(x, y). So, x and y are independent variables; z is a

We often write z = f(x, y). So, x and y are independent variables; z is a dependent variable.

Figure 1 shows the domain and range of two variable functions.

FIGURE 1

- The set of points in the plane where a function f(x, y) has a constant value f(x, y) = c is called a level curve of f.
- The set of all points (x, y, f(x, y)) in space is called the graph of f. The graph of f is also called the surface z = f(x, y).

This figure shows the graph of a surface

You can see the graph of several functions as follows:

(b) $f(x, y) = (x^2 + 3y^2)e^{-x^2-y^2}$

(c) $f(x, y) = \sin x + \sin y$

Limits and Continuity

Definition (Limit) Let *f* be a function of two variables whose domain *D* includes points arbitrarily close to (a, b). Then we say that the limit of f(x, y) as (x, y) approaches (a, b) is *L* and we write

$$\lim_{(x,y)\to(a,b)}f(x,y)=L$$

if for every number $\varepsilon > 0$ there is a corresponding number $\delta > 0$ such that if $(x, y) \in D$ and $0 < \sqrt{(x - a)^2 + (y - b)^2} < \delta$ then $|f(x, y) - L| < \varepsilon$

If $f(x, y) \to L_1$ as $(x, y) \to (a, b)$ along a path C_1 and $f(x, y) \to L_2$ as $(x, y) \to (a, b)$ along a path C_2 , where $L_1 \neq L_2$, then $\lim_{(x, y) \to (a, b)} f(x, y)$ does not exist.

Definition (Continuity):

A function f of two variables is called continuous at (a, b) if

$$\lim_{(x,y)\to(a,b)}f(x,y)=f(a,b)$$

We say *f* is continuous on *D* if *f* is continuous at every point (*a*, *b*) in D.

Graph of a continuous function

Graph of a discontinuous function