The volume V of a circular cylinder depends on its radius r and its height h. In fact, we know that $V=\pi r^{2} h$. We say that V is a function of r and h, and we write $V(r, h)=\pi r^{2} h$.

Definition

A function f of two variables is a rule that assigns to each ordered pair of real numbers (x, y) in a set D a unique real number denoted by $f(x, y)$. The set D is the domain of f and its range is the set of values that f takes on, that is, $\{f(x, y):(x, y) \in D\}$.
We often write $z=f(x, y)$. So, x and y are independent variables; z is a dependent variable.

Figure 1 shows the domain and range of two variable functions.

[^0]- The set of points in the plane where a function $f(x, y)$ has a constant value $f(x, y)=c$ is called a level curve of f.
- The set of all points $(x, y, f(x, y))$ in space is called the graph of f. The graph of f is also called the surface $\mathrm{z}=f(x, y)$.

This figure shows the graph of a surface

You can see the graph of several functions as follows:

(a) $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$

(b) $f(x, y)=\left(x^{2}+3 y^{2}\right) e^{-x^{2}-y^{2}}$

(c) $f(x, y)=\sin x+\sin y$

(d) $f(x, y)=\frac{\sin x \sin y}{x y}$

Limits and Continuity

Definition (Limit) Let f be a function of two variables whose domain D includes points arbitrarily close to (a, b). Then we say that the limit of $f(x, y)$ as (x, y) approaches (a, b) is L and we write

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=L
$$

if for every number $\varepsilon>0$ there is a corresponding number $\delta>0$ such that if $(x, y) \in D$ and $0<\sqrt{(x-a)^{2}+(y-b)^{2}}<\delta$ then $|f(x, y)-L|<\varepsilon$

```
If f(x,y) -> L L as (x,y) ->(a,b) along a path C1 and f(x,y) ->\mp@subsup{L}{2}{}}\mathrm{ as
(x,y)->(a,b) along a path }\mp@subsup{C}{2}{}\mathrm{ , where }\mp@subsup{L}{1}{}\not=\mp@subsup{L}{2}{}\mathrm{ , then }\mp@subsup{\operatorname{lim}}{(x,y)->(a,b)}{}f(x,y)\mathrm{ does
not exist.
```


Definition (Continuity):

A function f of two variables is called continuous at (a, b) if

$$
\lim _{(x, y) \rightarrow(a, b)} f(x, y)=f(a, b)
$$

We say f is continuous on D if f is continuous at every point (a, b) in D .

Graph of a continuous function

Graph of a discontinuous function

[^0]: FIGURE 1

