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Chain Rule
Theorem

Let the function 𝑧 = 𝑓(𝑥, 𝑦) has continuous partial derivatives 𝑓𝑥 and 𝑓𝑦 . If

the functions 𝑥 = 𝑔 𝑢, 𝑣 𝑎𝑛𝑑 𝑦 = ℎ(𝑢, 𝑣) have partial derivatives with
respect to 𝑢 and 𝑣, then the function 𝑧 = 𝑓(𝑔(𝑢, 𝑣), ℎ(𝑢, 𝑣)) has partial
derivatives with respect to 𝑢 and 𝑣
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Implicit Differentiation

Theorem: 
Let the function 𝑧=𝑓(𝑥,𝑦) given by 𝐹(𝑥, 𝑦, 𝑧) = 0. If the partial
derivatives 𝐹𝑥 and 𝐹𝑦 are continuous and 𝐹𝑧 ≠ 0, then from the chain

rule we obtain that
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Similarly taking the derivative with respect to 𝑦, we obtain

𝜕𝑧

𝜕𝑦
=

−𝐹𝑦

𝐹𝑧

We can summarize our results as follows
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Maximum and Minimum Problems

Look at the hills and valleys in the
graph of shown in Figure. There are
two points 𝑎, 𝑏 where 𝑓 has a local
maximum, that is, where 𝑓(𝑎, 𝑏) is
larger than nearby values of
𝑓 𝑥, 𝑦 . The larger of these two
values is the absolute maximum.
Likewise, 𝑓 has two local minima,
where 𝑓(𝑎, 𝑏) is smaller than
nearby values. The smaller of these
two values is the absolute
minimum.
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 If the inequalities in Definition 1 hold for all points (𝑥, 𝑦) in the domain of
𝑓, then 𝑓 has an absolute maximum (or absolute minimum) at (𝑎, 𝑏).
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Definition (Critical Point)
A point (𝑎, 𝑏) is called a critical point of 𝑓 if 𝑓𝑥 𝑎, 𝑏 = 0 and  𝑓𝑦 𝑎, 𝑏 = 0
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We need to be able to determine whether or not a function has an extreme value
(local min. or max.) at a critical point. The following test is given for this:
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