Chain Rule

Theorem

Let the function $z=f(x, y)$ has continuous partial derivatives f_{x} and f_{y}. If the functions $x=g(u, v)$ and $y=h(u, v)$ have partial derivatives with respect to u and v, then the function $z=f(g(u, v), h(u, v))$ has partial derivatives with respect to u and v

$$
\begin{aligned}
& \frac{\partial f}{\partial u}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial u}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial u} \\
& \frac{\partial f}{\partial v}=\frac{\partial f}{\partial x} \frac{\partial x}{\partial v}+\frac{\partial f}{\partial y} \frac{\partial y}{\partial v}
\end{aligned}
$$

Implicit Differentiation

Theorem:

Let the function $z=f(x, y)$ given by $F(x, y, z)=0$. If the partial derivatives F_{x} and F_{y} are continuous and $F_{z} \neq 0$, then from the chain rule we obtain that

$$
\frac{\partial F}{\partial x} \frac{d x}{d x}+\frac{\partial F}{\partial y} \frac{\partial y}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

Since $\frac{d x}{d x}=1$ and $\frac{\partial y}{\partial x}=0$

$$
\frac{\partial F}{\partial x}+\frac{\partial F}{\partial z} \frac{\partial z}{\partial x}=0
$$

So,

$$
\frac{\partial z}{\partial x}=\frac{-F_{x}}{F_{z}}
$$

Similarly taking the derivative with respect to y, we obtain

$$
\frac{\partial z}{\partial y}=\frac{-F_{y}}{F_{z}}
$$

We can summarize our results as follows

Maximum and Minimum Problems

Look at the hills and valleys in the graph of shown in Figure. There are two points (a, b) where f has a local maximum, that is, where $f(a, b)$ is larger than nearby values of $f(x, y)$. The larger of these two values is the absolute maximum. Likewise, f has two local minima, where $f(a, b)$ is smaller than nearby values. The smaller of these two values is the absolute minimum.

1 Definition A function of two variables has a local maximum at (a, b) if $f(x, y) \leqslant f(a, b)$ when (x, y) is near (a, b). [This means that $f(x, y) \leqslant f(a, b)$ for all points (x, y) in some disk with center (a, b).] The number $f(a, b)$ is called a local maximum value. If $f(x, y) \geqslant f(a, b)$ when (x, y) is near (a, b), then f has a local minimum at (a, b) and $f(a, b)$ is a local minimum value.
$>$ If the inequalities in Definition 1 hold for all points (x, y) in the domain of f, then f has an absolute maximum (or absolute minimum) at (a, b).

2 Theorem If f has a local maximum or minimum at (a, b) and the first-order partial derivatives of f exist there, then $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$.

Definition (Critical Point)

A point (a, b) is called a critical point of f if $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$

We need to be able to determine whether or not a function has an extreme value (local min. or max.) at a critical point. The following test is given for this:

3 Second Derivatives Test Suppose the second partial derivatives of f are continuous on a disk with center (a, b), and suppose that $f_{x}(a, b)=0$ and $f_{y}(a, b)=0$ [that is, (a, b) is a critical point of f]. Let

$$
D=D(a, b)=f_{x x}(a, b) f_{y y}(a, b)-\left[f_{x y}(a, b)\right]^{2}
$$

(a) If $D>0$ and $f_{x x}(a, b)>0$, then $f(a, b)$ is a local minimum.
(b) If $D>0$ and $f_{x x}(a, b)<0$, then $f(a, b)$ is a local maximum.
(c) If $D<0$, then $f(a, b)$ is not a local maximum or minimum.

NOTE 1 In case (c) the point (a, b) is called a saddle point of f and the graph of f crosses its tangent plane at (a, b).

NOTE 2 If $D=0$, the test gives no information: f could have a local maximum or local minimum at (a, b), or (a, b) could be a saddle point of f.

NOTE 3 To remember the formula for D, it's helpful to write it as a determinant:

$$
D=\left|\begin{array}{ll}
f_{x x} & f_{x y} \\
f_{y x} & f_{y y}
\end{array}\right|=f_{x x} f_{y y}-\left(f_{x y}\right)^{2}
$$

