Review of the Definite Integral

First let's recall the basic facts concerning definite integrals of functions of a single variable. If $f(x)$ is defined for $a \leqslant x \leqslant b$, we start by dividing the interval $[a, b]$ into n subintervals $\left[x_{i-1}, X_{i}\right]$ of equal width $\Delta x=(b-a) / n$ and we choose sample points X_{i}^{*} in these subintervals. Then we form the Riemann sum
\square

$$
\sum_{i=1}^{n} f\left(X_{i}^{*}\right) \Delta x
$$

and take the limit of such sums as $n \rightarrow \infty$ to obtain the definite integral of f from a to b :

$$
\begin{equation*}
\int_{a}^{b} f(x) d x=\lim _{n \rightarrow \infty} \sum_{i=1}^{n} f\left(x_{i}^{*}\right) \Delta x \tag{2}
\end{equation*}
$$

In the special case where $f(x) \geqslant 0$, the Riemann sum can be interpreted as the sum of the areas of the approximating rectangles in Figure 1, and $\int_{a}^{b} f(x) d x$ represents the area under the curve $y=f(x)$ from a to b.

In a similar manner we consider a function of two variables defined on a closed rectangle

$$
R=[a, b] \times[c, d]=\left\{(x, y) \in \mathbb{R}^{2}: a \leq x \leq b, c \leq y \leq d\right\}
$$

and we first suppose that $f(x, y) \geq 0$. The graph of f is a surface with equation $z=f(x, y)$.
Let S be the solid that lies above R and under the graph of f, that is,

$$
S=\left\{(x, y, z) \in \mathbb{R}^{3}: 0 \leq z \leq f(x, y),(x, y) \in \mathbb{R}\right\}
$$

(See Figure 2.) Our goal is to find the volume of S.

FIGURE 2

The first step is to divide the rectangle R into subrectangles. We accomplish this by dividing the interval $[a, b]$ into m subintervals $\left[x_{i-1}, x_{i}\right]$ of equal width $\Delta x=\frac{b-a}{m}$ and dividing $[c, d]$ into n subintervals $\left[y_{i-1}, y_{i}\right]$ of equal width $\Delta y=\frac{d-c}{n}$.
By drawing lines parallel to the coordinate axes through the endpoints of these subintervals, as in the following figure.

We form the subrectangles

$$
R_{i j}=\left[x_{i-1}, x_{i}\right] \times\left[y_{j-1}, y_{j}\right]=\left\{(x, y): x_{i-1} \leq x \leq x_{i}, y_{j-1} \leq y \leq y_{j}\right\}
$$ each with area $\Delta A=\Delta x \Delta y$.

If we choose a sample point $\left(x_{i j}^{*}, y_{i j}^{*}\right)$ in each
 $R_{i j}$, then we can approximate the part of S that lies above each $R_{i j}$ by a thin rectangular box (or "column") with base $R_{i j}$ and height $f\left(x_{i j}^{*}, y_{i j}^{*}\right)$ as shown in the Figure 4. The volume of this box is the height of the box times the area of the base rectangle:

$$
f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

If we follow this procedure for all the rectangles and add the volumes of the corresponding boxes, we get an approximation to the total volume of S :

$$
V \approx \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

This double sum means that for each subrectangle we evaluate f at the chosen point and multiply by the area of the subrectangle, and then we add the results. Our intuition tells us that the approximation given in becomes better as m and n become larger and so we would expect that

$$
V=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

We use the expression in this equation to define the volume of the solid S that lies under the graph of f and above the rectangle R. So we give the following definition:

Definition:

The double integral of f over the rectangle R is

$$
\iint_{R} f(x, y) d A=\lim _{m, n \rightarrow \infty} \sum_{i=1}^{m} \sum_{j=1}^{n} f\left(x_{i j}^{*}, y_{i j}^{*}\right) \Delta A
$$

İf this limit exists.

If $f(x, y) \geqslant 0$, then the volume V of the solid that lies above the rectangle R and below the surface $z=f(x, y)$ is

$$
V=\iint_{R} f(x, y) d A
$$

The following theorem gives a practical method for evaluating a double integral by expressing it as an iterated integral (in either order).

4 Fubini's Theorem If f is continuous on the rectangle
$R=\{(x, y) \mid a \leqslant x \leqslant b, c \leqslant y \leqslant d\}$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{c}^{d} f(x, y) d y d x=\int_{c}^{d} \int_{a}^{b} f(x, y) d x d y
$$

More generally, this is true if we assume that f is bounded on R, f is discontinuous only on a finite number of smooth curves, and the iterated integrals exist.

Fubini's Theorem -Stronger form

Let $f(x, y)$ be continuous on a region R
$>$ If R is defined by $a \leq x \leq b, u(x) \leq y \leq v(x)$, with u and v are continuous on $[a, b]$, then

$$
\iint_{R} f(x, y) d A=\int_{a}^{b} \int_{u(x)}^{v(x)} f(x, y) d y d x
$$

$>$ If R is defined by $c \leq y \leq d, h_{1}(y) \leq x \leq h_{2}(y)$ with h_{1} and h_{2} are continuous on $[c, d]$, then

$$
\iint_{R} f(x, y) d A=\int_{c}^{d} \int_{h_{1}(y)}^{h_{2}(y)} f(x, y) d x d y
$$

Properties of Double Integrals

$$
\iint_{D}[f(x, y)+g(x, y)] d A=\iint_{D} f(x, y) d A+\iint_{D} g(x, y) d A
$$

$\iint_{D} c f(x, y) d A=c \iint_{D} f(x, y) d A$

$$
\text { If } D=D_{1} \cup D_{2}, \quad \iint_{D} f(x, y) d A=\iint_{D_{1}} f(x, y) d A+\iint_{D_{2}} f(x, y) d A
$$

If $f(x, y) \geqslant g(x, y)$ for all (x, y) in D, then

$$
\iint_{D} f(x, y) d A \geqslant \iint_{D} g(x, y) d A
$$

