CHAPTER 2

CALCULATIONS IN ANALYTICAL CHEMISTRY

In this chapter,

- atomic mass unit
* mol
* solutions and concentrations
* chemical stoichiometry
* calculations about above mentioned subjects
will be considered.

SI BASED UNITS

Physical Property	Name of Unit	Symbol
Mass	kilogram	kg
Lenght	meter	m
Time	second	s
Temperature	kelvin	K
Amount of substance	mole	mol
Electric Current	ampere	A
Luminous intensity	candela	cd

Distinction between Mass and Weight

$\operatorname{Mass}(m)$, is an invariant measure of the quantity of matter.

Weight (w), is
the force of gravitational attraction between that matter and Earth.

The relation between weight and mass is given as:

$$
w=m g
$$

$w \rightarrow$ weight of a substance
$g \rightarrow$ gravity force
$m \rightarrow$ mass of a substance

THE MOLE:

the SI unit for the amount of a chemical substance.

* It is always associated with specific microscopic entities such as atoms, molecules, ions, electrons, other particles, or specified groups of such particles as represented by a chemical formula.

1 mol of any species is equal to 6.022×10^{23} number of atoms, molecules, ions, electrons...

1 mol of Ca atom contains $6.022 \times 10^{23} \mathrm{Ca}$ atoms
1 mol of Ca^{+2} ion contains $6.022 \times 10^{23} \mathrm{Ca}^{+2}$ ions
1 mol of $\mathrm{H}_{2} \mathrm{O}$ molecule contains $6.022 \times 10^{23} 1 \mathrm{~mol} \mathrm{H}_{2} \mathrm{O}$ molecules

MILLIMOLE

The millimole is $1 / 1000$ of a mole.
The mass in grams of a millimole is the millimolar mass ($\mathrm{m} M$)= $1 / 1000$ of the molar mass.

The molar mass M of a substance is the mass in grams of 1 mole of that substance.

Examples of calculating molar mass

Molar mass of formaldehyde $\mathrm{CH}_{2} \mathrm{O}$ is calculated as:

$$
\mathrm{M}_{\mathrm{CH}_{2} \mathrm{O}}=\frac{1 \mathrm{molC}}{\mathrm{~mol}_{\mathrm{CH}}^{2} \mathrm{O}} \times \frac{12.0 \mathrm{~g}}{\mathrm{molC}}+\frac{2 \mathrm{molH}}{\mathrm{~mol}_{\mathrm{CH}}^{2} \mathrm{O}} \times \frac{1.0 \mathrm{~g}}{\mathrm{molH}}+\frac{1 \mathrm{molO}}{\mathrm{~mol}_{\mathrm{CH}}^{2}} \mathrm{O} \quad \times \frac{16.0 \mathrm{~g}}{\mathrm{molO}}
$$

$\mathrm{M}_{\mathrm{CH}_{2} \mathrm{O}}=30.0 \mathrm{~g} / \mathrm{molCH}_{2} \mathrm{O}$

Molar mass of glucose $\mathrm{C}_{6} \mathrm{H}_{12} \mathrm{O}_{6}$ is calculated as:

$$
M_{C_{6} \mathrm{H}_{12} \mathrm{O}_{6}}=\frac{6 \mathrm{molC}}{\mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{12.0 \mathrm{~g}}{\mathrm{molC}}+\frac{12 \mathrm{molH}}{\mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{1.0 \mathrm{~g}}{\mathrm{molH}}+\frac{6 \mathrm{molO}}{\mathrm{~mol}_{6} \mathrm{H}_{12} \mathrm{O}_{6}} \times \frac{16.0 \mathrm{~g}}{\mathrm{molO}}
$$

${ }^{M_{C 6} \mathrm{H}_{12} \mathrm{O}_{6}}=180.0 \mathrm{~g} / \mathrm{mol}_{2} \mathrm{H}_{12} \mathrm{O}_{6}$

Calculating the Amount of a Substance in Moles or Millimoles

EXAMPLE: Find the number of moles and millimoles of sodium carbonate, $\quad \mathrm{Na}_{2} \mathrm{CO}_{3} \quad(\mathrm{M}: \quad 106.1 \quad \mathrm{~g} / \mathrm{mol}$) that are contained in 2.00 g of the pure sodium carbonate.

Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{~mol})=2.00 \mathrm{gNa}_{2} \mathrm{CO}_{3} \frac{1 \mathrm{molNa}_{2} \mathrm{CO}_{3}}{106 \mathrm{gNa}_{2} \mathrm{CO}_{3}}=0.01887 \mathrm{molNa}_{2} \mathrm{CO}_{3}$

Amount of $\mathrm{Na}_{2} \mathrm{CO}_{3}(\mathrm{mmol})=2.00 \mathrm{gNa}_{2} \mathrm{CO}_{3} \frac{1 \mathrm{mmolNa}_{2} \mathrm{CO}_{3}}{0.106 \mathrm{gNa}_{2} \mathrm{CO}_{3}}=18.87 \mathrm{mmolNa}_{2} \mathrm{CO}_{3}$

Solutions and Concentrations

Four fundamental ways of expressing solution concentration:

1. molar concentration,
2. percent concentration,
3. solution-diluent volume ratio 4. 4. p-functions.
4. The molar concentration (M) Px of a solution of a solute species X is the number of moles of that species that is contained in 1 liter of the solution.

$$
1 \mathrm{M}=(1 \mathrm{~mol} / \mathrm{liter}-1 \mathrm{millimol} / \mathrm{milliliter})
$$

$$
C_{X}=\text { Molar concentration }=\frac{\text { no.moles of } \operatorname{solute}\left(n_{x}\right)}{\text { volume in } \operatorname{liters}(V)}
$$

Analytical Concentration

Molar analytical concentration is the total number of moles of a solute, regardless of its chemical state, in 1 L of solution. The molar analytical concentration describes how a solution of a given concentration can be prepared.

To prepare $1 \mathrm{M} \mathrm{CH}_{3} \mathrm{COOH}$ solution

> $1 \mathrm{~mol} \rightarrow 60 \mathrm{~g} \mathrm{CH}_{3} \mathrm{COOH}$ is dissolved in 1 L .

Equilibrium Concentration

Molar equilibrium concentration is the molar concentration of a particular species in a solution at equilibrium.

To specify the molar equilibrium concentration of a species, it is necessary to know how the solute behaves when it is dissolved in a solvent.

Equilibrium molar concentrations are usually symbolized by placing square brackets around the chemical formula for the species.

For example; HNO_{3} with an analytical concentration of $\mathrm{C}_{\text {нNO3 }}=1.0$ M totally dissolves in aqueous media, we can write:

$$
\left[\mathrm{HNO}_{3}\right]=0.00 \mathrm{M} \quad\left[\mathrm{H}^{+}\right]=1.01 \mathrm{M} \quad\left[\mathrm{NO}_{3}^{-}\right]=0.99 \mathrm{M}
$$

2. Percent Concentration

Chemists frequently express concentrations in terms of percent (parts per hundred, \%) :

Weight percent (w / w)
$=($ mass of solute $/$ mass of solution) $\times \% 100$
Volume percent (V / v)
$=($ volume of solute $/$ volume of solution $) \times \% 100$
Weight/volume percent (w/v) $=($ mass of solute, $\mathrm{g} /$ volume of solution, mL$) \times \% 100$

Parts Per Million- Parts Per Billion

$$
\begin{aligned}
& C_{\text {ppm }}=\left(\frac{\text { mass of solute }, g}{\text { mass of solution }, g}\right) \times 10^{6} \mathrm{ppm} \\
& C_{\text {ppm }}=\frac{\text { mass of solute, } \mathrm{mg}}{\text { mass of solution, } \mathrm{L}}=\mathrm{ppm}
\end{aligned}
$$

$$
\begin{aligned}
& C_{\mathrm{ppb}}=\left(\frac{\text { mass of solute }, \mathrm{g}}{\text { mass of solution }, g}\right) \times 10^{9} \mathrm{ppb} \\
& C_{\mathrm{ppb}}=\frac{\text { mass of solute, } \mu \mathrm{g}}{\text { mass of solution, } \mathrm{L}}=p p m
\end{aligned}
$$

For dilute aqueous solutions, the density of solution is equalto the density of water, $1.00 \mathrm{~g} / \mathrm{mL}$. Therefore, $1 \mathrm{ppm}=1.00 \mathrm{mg} / \mathrm{L}$ is accepted.

3. Solution- diluent volume ratio

The composition of a dilute solution is sometimes specified in terms of the volume of a more concentrated solution and the volume of solvent used in diluting it.

1:4 nitric acid solution contains

four volumes of water for each volume of concentrated nitric acid .

4. p-function

Especially for very diluted solutions, instead of using exponential numbers, scientists frequently express the concentration of a species in terms of its p-function, or p-value.

The \mathbf{p}-value is the negative logarithm (to the base 10) of the molar concentration of that species.

Thus, for the species X,

$$
\mathrm{pX}=-\log [\mathrm{X}]
$$

EXAMPLE : Calculate the p-value for each ion in a solution that is 0.013 M aqueous KCl and $2.30 \times 10^{-3} \mathrm{M} \mathrm{HCl}$.

Density and Specific Gravity of Solutions

- Density expresses the mass of a substance per unit volume. In SI units, density is expressed in units of kg / L or alternatively g / mL.
- Specific gravity is the ratio of the mass of a substance to the mass of an equal volume of water at a specified temperature $\left(4^{\circ} \mathrm{C}\right)$. (it has no unit)

Density and Specific Gravity of Some Commercially Available Solutions

Reagent	Concentration $\%(w / w)$	Specific gravity
Acetic Acid $\mathrm{CH}_{3} \mathrm{COOH}$	99.7	1.05
Ammonia NH_{3}	29.0	0.90
Hydrochloric acid HCl	37.2	1.19
Hydrofluoric acid HF	49.5	1.15
Nitric acid HNO_{3}	70.5	1.42
Perchloric acid HClO_{4}	71.0	1.67
Phosphoric acid $\mathrm{H}_{3} \mathrm{PO}_{4}$	86.0	1.71
Sulfuric acid $\mathrm{H}_{2} \mathrm{SO}_{4}$	96.5	1.84

EXAMPLE : Describe the preparation of 100 mL 0.023 M HNO_{3} from a concentrated solution that has a specific gravity of 1.42 and is $70.5 \%(\mathrm{w} / \mathrm{w}) \mathrm{HNO}_{3}(63 \mathrm{~g} / \mathrm{mol})$.

$V_{\text {conc. }} \times C_{\text {conc. }}=V_{\text {diluted }} \times C_{\text {diluted }}$

$$
L_{\text {conc. } .}\left(\frac{\text { mol } \text { conc. }}{L_{\text {conc. }}}\right)=L_{\text {dil. }} \times\left(\frac{\text { mol dil. }}{L_{\text {dil. }}}\right)
$$

$m L_{\text {conc. }} \times\left(\frac{m m o \text { tonc. }}{m L_{\text {conc. }}}\right)=m L_{\text {dil. }} \times\left(\frac{\left.m m o \text { dil. }^{m L_{\text {dil. }}}\right)}{}\right.$

CHEMICAL STOICHIOMETRY

Stoichiometry is the quantitative relationship among the amounts of reacting chemical species.

Reactants \rightarrow Products

An empirical formula gives the simplest whole number ratio of atoms in a chemical compound.

A molecular formula specifies the number of atoms in a molecule.

A structural formula reveal structural differences between compounds that are not shown in their common molecular formula.

> We may calculate the empirical formula of a compound from its percent composition. To determine the molecular formula, we must know the molar mass of the compound.

STOICHIOMETRIC CALCULATIONS

A balanced chemical equation gives the combining ratios, or stoichiometry-in units of moles-of reacting substances and their products.

$$
2 \mathrm{KI}_{(a q)}+\mathrm{Hg}\left(\mathrm{NO}_{3}\right)_{2(a q)} \leftrightarrow \mathrm{HgI}_{2(\mathrm{~s})}+2 \mathrm{KNO}_{3(\mathrm{aq)}}
$$

Mass $\xrightarrow{(1)}$ Moles $\xrightarrow{(2)}$ Moles $\xrightarrow{(3)}$ Mass
(1) Divide by molar mass
(2) Multiply by stoichiometric ratio
(3) Multiply by molar mass

EXAMPLE : a) What mass of $\mathrm{Pb}\left(\mathrm{NO}_{3}\right)_{2}$ is needed to convert 2.33 g of $\mathrm{Na}_{2} \mathrm{CO}_{3}$ to PbCO_{3} ? b) What mass of $\mathrm{PbCO}_{3}(275.7$ $\mathrm{g} / \mathrm{mol}$) will be formed?

