CHAPTER 2

CALCULATIONS IN ANALYTICAL CHEMISTRY

SI BASED UNITS

Physical Property	Name of Unit	Symbol
Mass	kilogram	kg
Lenght	meter	m
Time	second	S
Temperature	kelvin	K
Amount of substance	mole	mol
Electric Current	ampere	A
Luminous intensity	candela	cd

Distinction between Mass and Weight

Mass (*m*), is an invariant measure of the quantity of matter.

Weight (*w*), *is* the force of gravitational attraction between that matter and Earth.

The relation between weight and mass is given as:

w=mg $w \rightarrow weight of a substance$ $g \rightarrow gravity force$ $m \rightarrow mass of a substance$

THE MOLE:

the SI unit for the amount of a chemical substance.

It is always associated with specific microscopic entities such as atoms, molecules, ions, electrons, other particles, or specified groups of such particles as represented by a chemical formula.

1 mol of any species is equal to 6.022×10²³ number of atoms, molecules, ions, electrons...

 $\begin{array}{l} 1 \text{ mol of Ca atom contains } 6.022 \times 10^{23} \text{ Ca atoms} \\ 1 \text{ mol of Ca}^{+2} \text{ ion contains } 6.022 \times 10^{23} \text{ Ca}^{+2} \text{ ions} \\ 1 \text{ mol of H}_2\text{O} \text{ molecule contains } 6.022 \times 10^{23} \text{ 1 mol H}_2\text{O} \text{ molecules} \end{array}$

MILLIMOLE

The millimole is 1/1000 of a mole.

The mass in grams of a millimole is the millimolar mass (m*M*)= 1/1000 of the molar mass.

The molar mass *M* of a substance is the mass in grams of **1 mole** of that substance.

Examples of calculating molar mass

Molar mass of formaldehyde CH₂O is calculated as:

$$M_{CH_2O} = \frac{1molC}{mol_{CH_2O}} \times \frac{12.0g}{molC} + \frac{2molH}{mol_{CH_2O}} \times \frac{1.0g}{molH} + \frac{1molO}{mol_{CH_2O}} \times \frac{16.0g}{molO}$$

$$M_{CH_2O} = 30.0g / molCH_2O$$

Molar mass of glucose $C_6H_{12}O_6$ is calculated as:

$$M_{C_{6}H_{12}O_{6}} = \frac{6molC}{molC_{6}H_{12}O_{6}} \times \frac{12.0g}{molC} + \frac{12molH}{molC_{6}H_{12}O_{6}} \times \frac{1.0g}{molH} + \frac{6molO}{molC_{6}H_{12}O_{6}} \times \frac{16.0g}{molO}$$

$$M_{C_6H_{12}O_6} = 180.0g / molC_2H_{12}O_6$$

Calculating the Amount of a Substance in Moles or Millimoles

EXAMPLE: Find the number of moles and millimoles of sodium carbonate, Na_2CO_3 (*M*: 106.1 g/mol) that are contained in 2.00 g of the pure sodium carbonate.

Amount of $Na_2CO_3(mol) = 2.00gNa_2CO_3 \frac{1molNa_2CO_3}{106gNa_2CO_3} = 0.01887molNa_2CO_3$

Amount of $Na_2CO_3(mmol) = 2.00gNa_2CO_3 \frac{1mmolNa_2CO_3}{0.106gNa_2CO_3} = 18.87mmolNa_2CO_3$

Solutions and Concentrations

Four fundamental ways of expressing solution concentration:

- 1. molar concentration,
- 2. percent concentration,
- 3. solution-diluent volume ratio

4. 4. p-functions.

1. The molar concentration(M) *Cx* of a solution of a solute species X is the number of moles of that species that is contained in 1 liter of the solution.

1 M= (1 mol/liter – 1 millimol/milliliter)

Analytical Concentration

Molar analytical concentration is the total number of moles of a solute, regardless of its chemical state, in 1 L of solution. The molar analytical concentration describes how a solution of a given concentration can be prepared.

To prepare 1 M CH₃COOH solution $1 \mod \rightarrow 60 \text{ g CH}_3\text{COOH}$ is dissolved in 1 L.

Equilibrium Concentration

Molar equilibrium concentration is the molar concentration of a particular species in a solution at equilibrium.

To specify the molar equilibrium concentration of a species, it is necessary to know how the solute behaves when it is dissolved in a solvent.

Equilibrium molar concentrations are usually symbolized by placing square brackets around the chemical formula for the species.

For example; HNO_3 with an analytical concentration of C _{HNO3} = 1.0 *M totally dissolves in aqueous media, we can write:*

 $[HNO_3] = 0.00 M$ $[H^+] = 1.01 M$ $[NO_3^-] = 0.99 M$

2. Percent Concentration

Chemists frequently express concentrations in terms of percent (parts per hundred, %) :

Weight percent (w/w)

=(mass of solute /mass of solution)×%100

Volume percent (v/v) =(volume of solute/volume of solution)×%100

Weight/volume percent (w/v) =(mass of solute,g /volume of solution,mL)×%100

Parts Per Million- Parts Per Billion

For dilute aqueous solutions, the density of solution is equalto the density of water, 1.00 g/mL. Therefore, 1 ppm=1.00 mg/L is accepted.

3. Solution- diluent volume ratio

The composition of a dilute solution is sometimes specified in terms of the volume of a more concentrated solution and the volume of solvent used in diluting it.

1:4 nitric acid solution contains

four volumes of water for each volume of concentrated nitric acid .

4. p-function

Especially for very diluted solutions, instead of using exponential numbers, scientists frequently express the concentration of a species in terms of its **p-function**, or **p-value**.

The p-value is the negative logarithm (to the base 10) of the molar concentration of that species.

Thus, for the species X,

$$pX = -log[X]$$

EXAMPLE : Calculate the p-value for each ion in a solution that is **0.013** M aqueous KCI and **2.30×10⁻³ M** HCI.

Density and Specific Gravity of Solutions

- Density expresses the mass of a substance per unit volume. In SI units, density is expressed in units of kg/L or alternatively g/mL.
- Specific gravity is the ratio of the mass of a substance to the mass of an equal volume of water at a specified temperature (4 °C).(it has no unit)

Density and Specific Gravity of Some Commercially Available Solutions

Reagent	Concentration % (w/w)	Specific gravity
Acetic Acid CH ₃ COOH	99.7	1.05
Ammonia NH ₃	29.0	0.90
Hydrochloric acid HCl	37.2	1.19
Hydrofluoric acid HF	49.5	1.15
Nitric acid HNO ₃	70.5	1.42
Perchloric acid HClO ₄	71.0	1.67
Phosphoric acid H ₃ PO ₄	86.0	1.71
Sulfuric acid H ₂ SO ₄	96.5	1.84

EXAMPLE : Describe the preparation of **100 mL 0.023 M** HNO₃ from a concentrated solution that has a specific gravity of 1.42 and is 70.5% (w/w) HNO₃ (63 g/mol).

$$V_{conc.} \times C_{conc.} = V_{diluted} \times C_{diluted}$$

$$L_{conc.} \times \left(\frac{mokonc.}{L_{conc.}} \right) = L_{dil.} \times \left(\frac{mokil.}{L_{dil.}} \right)$$

$$mL_{conc.} \times \left(\frac{mmobonc.}{mL_{conc.}}\right) = mL_{dil.} \times \left(\frac{mmobil.}{mL_{dil.}}\right)$$

CHEMICAL STOICHIOMETRY

Stoichiometry is the quantitative relationship among the amounts of reacting chemical species.

Reactants → **Products**

An **empirical formula** gives the simplest whole number ratio of atoms in a chemical compound.

A molecular formula specifies the number of atoms in a molecule.

A structural formula reveal structural differences between compounds that are not shown in their common molecular formula.

We may calculate the empirical formula of a compound from its percent composition. To determine the molecular formula, we must know the molar mass of the compound.

STOICHIOMETRIC CALCULATIONS

A balanced chemical equation gives the combining ratios, or stoichiometry—in units of moles—of reacting substances and their products.

 $2\mathsf{KI}_{(aq)} + \mathsf{Hg}(\mathsf{NO}_3)_{2(aq)} \leftrightarrow \mathsf{HgI}_{2(s)} + 2\mathsf{KNO}_{3(aq)}$

(1) Divide by
molar mass(2) Multiply by
stoichiometric ratio(3) Multiply by
molar mass

EXAMPLE : a) What mass of $Pb(NO_3)_2$ is needed to convert 2.33 g of Na_2CO_3 to $PbCO_3$? b) What mass of $PbCO_3$ (275.7 g/mol) will be formed?