
Functions in MATLAB
Lecture 3

Dr. Görkem Saygılı

Department of Biomedical Engineering
Ankara University

Introduction to MATLAB, 2017-2018 Spring



Writing Functions in MATLAB:

We already see that we can use Command Window to enter com-
mands in MATLAB. The problem with using Command Window is
that it is not possible to load a sequence of previous commands
at once easily. We need functions to easily re-run our previous
code.In MATLAB, we can also write functions so that we can use
them in other scripts.

We have already seen some built-in functions in MATLAB. In this
lecture, we will see how to create our own functions.



rand() Function:

rand() is function in MATLAB to generate random variables be-
tween 0 to 1. rand(n) generates an n × n matrix consisting the
generated random variables:



Generating Numbers Between 0 and 10:

Let’s write a function so that it generates integer numbers be-
tween 0 to 10:



Exercise:

Similarly, can you code a function that can generate n × n random
integers between 2 and 8?



Solution:

We already know how to generate n× n random integers from 0 to
6. If we further increment the result by 2, we would end up with
random integers from 2 to 8:



End Keyword for Functions:

You can use end keyword to indicate the end of a function. But it
is not very common except you use multiple functions:



Variable Declarations in a Function (Local Variables):

In MATLAB, the variables declared in a function can not be ac-
cessed from Command Window afterwards. They are local. These
variables are just for the use inside a function:



The Reason of Function-Scoped Variables:

If the variables inside a function changes the values of variables in
the workspace, then the workspace becomes messy with so many
variables from different functions.

If function variables were the same as workspace variables, the
user would have to keep track of the changes for each variable
previously defined in the workspace and possibly could had been
modified by the function.

The situation would become even more complex, when you are
using multiple functions together (nested functions).



How to Return the Resulting Variable from a Function:

We do our calculations using functions and at the end, the vari-
ables declared inside the function is not accessible from outside of
the function. The way to access these variables after the execution
of the function is to indicate them as output variables:

In red, the output variable of the function is indicated.



Function Input:

Function name following by parenthesis, we can define our inputs
to the function:

The inputs are separated using commas in between.



Exercise:

Let’s write a MATLAB function that accepts a minimum and
maximum threshold and returns an integer scalar between these
thresholds as output.



Solution:



Multiple Outputs:

Let’s say we want to generate 10 integers between 0 to 10 and we
want to also calculate the sum of the generated sequence of num-
bers. We do not need to write two separate functions. We can
instead return both results using a single function with multiple
outputs:



Using The Output of Interest:

Functions may produce multiple outputs, yet we might not need to
use all of them at each time. Consider our previous example and
imagine we only need the sum of the generated variables:



Formal Definition of Function in MATLAB:

As common for all programming languages, we need to follow
some rules while creating functions in MATLAB:

output1, output2, ... = functionName(input1, input2, ...).

I We had some syntactic rules while defining variable names,
same applies to function names.

I Although not a must, the function name should be the same
as the file name of the function (functionName.m). If they
are different, MATLAB just considers the name of the .m file.

I The function declaration must be at the first line. Only
exceptions are the comments.

I Avoid using the same names as MATLAB built-in functions
for your functions. If you do, MATLAB will execute your
function (if exists in its path) than the built-in function.



Exist Built-in Function:

How can we be sure if there is a variable or built-in function that
has the same name as the name we want to use?

Luckily we have a built-in function to check if the name is already
in use: exist.



Subfunctions:

We can write multiple functions in a M-file as we already saw.
The first function is called the main function and the other func-
tions are subfunctions.

We can write as many subfunctions as we want.

The use of keyword end is optional. Yet, if you use it once, you
need to use it for all functions inside the .m file. Otherwise, you
can omit end keyword for all functions inside the file.



The Scope of Variables:

The scope of a variable defines the region in a code where the
variable is accessible. For example, a declared variable inside a
function is valid for the statements of that function after the dec-
laration.

Whenever execution of a function is finished, all the variables ini-
tialized in that function are deleted and no longer exists in the
workspace after MATLAB returns back to the Command Window.

Such variables are called local variables.



Global Scope Variables:

If you want a variable to be accessible from multiple functions and
from Command Window, you can define it as a global variable.

Any changes to a global variable effects all other functions using
that variable afterwards. Hence, you need to be careful while using
global variables.

Global variables are especially common in MATLAB GUI pro-
grams.


