Data Types in MATLAB

Lecture 7

Dr. Gorkem Saygili

Department of Biomedical Engineering
Ankara University

Introduction to MATLAB, 2017-2018 Spring



Qutline:

Numerical Data

v

v

Categorical Data

Struct

Cell

built-in functions for different data types

v

v

v



Numerical Data:

Numerical data is composed of numbers that can be used in math-
ematical calculations.

Some examples are:

int8
uint8
intl6
uintl6
int32
uint32
int64
uint64
single
double

vV V. Y V. YV VY VvV VvY



Difference between Data Types:

There are several differences between the numerical data types.
Some of the main differences are:

» The size of memory to be used to store them.

» The minimum and maximum (the range) of numbers that can
be stored.

» Whether or not we can store floating point numbers.



Single-Double Precision:

Single precision corresponds to float in C/C++ where MATLAB
uses 32 bits to store the number in its memory.

Double precision corresponds to double in C/C++ where MAT-
LAB uses 64 bits to store the number in its memory.

single precision: —3.7 x 1038 to 3.7 x 1038

double precision: —1.79 x 10308 to 1.79 x 10308



Checking the Type of the Data:

There is a built-in function in MATLAB to check the type of data:
class().

>> =5}
»>>» class (X)

ans =
double

>> y = 'Maclab’';
>>» class(y)

ans =
char

HBSS



Mixed-mode Arithmetic:

While calculations are done on the same variable type, such as
multiplying two doubles, the result is also a variable of the same
type, double.

MATLAB also allows calculations on different variable types, such
as one uint8 multiplied with a double. In such cases, the resulting
variable is the same type with the smallest-sized input variable
(multiplication of uint8 with double results uint8).

This is for memory efficiency.



Variable Casting - To Smaller Size:

In MATLAB, it is possible to convert a variable from one type to
another. This process is called variable casting. This is not specific
for MATLAB, you can also cast variables in C/C++.

> X = 5.5;

>> class(x)

ans =
'double’

>>= b = uint8(x);
>> class(b)

ans =
'uints'

=>> disp(b)
6



Variable Casting - To Larger Size:

There are no issues while casting a variable to a larger-sized type.

The only difference is that now MATLAB uses a larger memory
size to store the casted variable.

== X=5;

>= x = uint8(x);
>> class(x)

ans =

'uints'

>> y = single(x);
>> class(y)

ans =

'single’



String Type:

All data types are not related to numeric values in MATLAB. A
different type of data in terms of content is char arrays, strings.

>> s = 'Matlab’;
>» t = "MATLAB';
>> class(s)
ans =

‘char'
>> class(t)

ans =

'string’



Comparing Strings:

In MATLAB, there is a built-in function to compare strings, str-
cmp():

>> t = "MATLAB";
>> strcmp(t, 'matlab')

ans =
Llogical
(0]
>> strcmp(t, 'MATLAB')
ans =
Llogical

1



Char Arrays:

Character arrays are similar to strings and also have similar char-
acteristics as arrays (vectors). Character arrays have a length and
can be modified similar to arrays.

>> s = 'Matlab';
>> class(s)
ans =
‘char'
>> length(s)

ans =

'matlab’



Cascading Char Arrays:

Similar to cascading for numerical arrays, MATLAB allows us to
cascade char arrays:

>> sl = 'Matlab';
=>s2 = ' 1s fun';
= s = [s1, s2];
>> disp(s)

Matlab 1s fun
))l



ASCII Encoding Scheme:

Strings of type char are stored as numerical values using corre-
sponding ASCII codes for that specific character:

>> disp(s)

Matlab 1s fun

=> disp(class(s))

char

=>> disp(int8(s))
Columns 1 through 7

77 97 116 108 97 98 32
Columns 8 through 13

105 115 32 102 117 110



Ceasar’s Cipher:

As perhaps one of the simplest encryption techniques today has
its roots from the time of Julius Ceasar. This technique relies
on shifting each character of the original string by a predefined
amount (known only by trusted people).

Original Characters: ABCDEFGHIJKLMNOPQRSTUVWXYZ
Cipher Characters: XYZABCDEFGHIJKLMNOPQRSTUVW



Arithmetic Operations on ASCII Characters:

MATLAB allows us to apply arithmetic operations on character
arrays:

>> disp(s)

Matlab 1is fun

>> §_ = s+3;

>> disp(char(s_))
Pdwode#lv#1xq
>>S_ = S_-3;

>> disp(char(s_))
Matlab 1is fun

5=



Arrays with Unique Data Types:

Normally MATLAB arrays are composed of unique types:

>>x =[3245 3 2];

>> x(1) = 'Matlab’

In an assignment A(:) = B, the number of
elements 1n A and B must be the same.

> x(2) = '™

3 77 4 S 3 2

>> x(2) = "m"



Struct:

MATLAB allows us to store different data types in one data for-
mat, which is called struct.

=> s = struct()
s =

struct with no fields.
>> 5.X = X
s =

struct with fields:

x: [3 NaN 45 3 2]

= s.t =1t
s =

struct with fields:

x: [3 NaN 45 3 2]
t: "MATLAB"



Dynamically Assigning Values to Struct:

Rather than assigning values statically, we can also create ele-
ments of struct dynamically using the following format:

== st.b = [3, 4; 5 6];
>>a = 'st a';

>> st.(a) = a

st =

struct with fields:

b: [2x2 double]
st_a: 'st_a'



Built-in Function: setfield():
struct data can be created with struct command and its content
can be created using setfield() built-in function:

>> b = st.b;

=> st_a = st.st_a;

>> st2 = struct('b', b);

>> st2=setfield(st2, st_a, st_a)

st2 =
struct with fields:

b: [2x2 double]
st_a: 'st_a'



Cell Data Type:
Elements of struct data is accessed by their names. In comparison,

we can create arrays inside arrays using cell data type in MAT-
LAB:

>> A = {logical(l), 'Matlab'; int8(7),...
[5 4; 2 11};
=>> disp(A)

[1] 'Matlab'

[7] [2x2 double]
=> A{1,1}
ans =

Llogical
1

>> A{1,2}

ans =

'Matlab'



