Physics 122: Electricity & Magnetism – Lecture 7 Electric Potential

Baris EMRE

Work Done by a Constant Force

Potential Energy, Work and Conservative Force

Start

$$W_g = \vec{F} \cdot \Delta \vec{r} = -mg\hat{j} \cdot [(y_f - y_i)\hat{j}]$$
$$= mgy_i - mgy_f$$

Then

$$U_g \equiv mgy$$

So

$$W_g = U_i - U_f = -\Delta U$$

$$\Delta U = U_f - U_i = -W_g$$

Electric Potential Energy

□ The potential energy of the system

$$\Delta U = U_f - U_i = -W$$

- The work done by the electrostatic force is path independent.
- □ Work done by a electric force or "field"

$$W = \vec{F} \cdot \Delta \vec{r} = q \vec{E} \cdot \Delta \vec{r}$$

Work done by an Applied force

$$\Delta K = K_f - K_i = W_{app} + W$$

$$W_{app} = -W \qquad \Delta U = U_f - U_i = W_{app}$$

Electric Potential

The electric potential energy

• Start
$$dW = \vec{F} \cdot d\vec{s}$$

• Then $dW = q_0 \vec{E} \cdot d\vec{s}$

So

$$W = q_0 \int_i^f \vec{E} \cdot d\vec{s}$$

$$\Delta U = U_f - U_i = -W = -q_0 \int_i^f \vec{E} \cdot d\vec{s}$$

The electric potential $V = \frac{U}{q}$

$$\Delta V = V_f - V_i = \frac{U_f}{q} - \frac{U_i}{q} = \frac{\Delta U}{q}$$
$$\Delta V \equiv \frac{\Delta U}{q_0} = -\int_i^f \vec{E} \cdot d\vec{s}$$

- Potential difference depends only on the source charge distribution (Consider points *i* and *f* without the presence of the test charge;
- The difference in potential energy exists only if a test charge is moved between the points.

Electric Potential

- Just as with potential energy, only *differences* in electric potential are meaningful.
 - Relative reference: choose arbitrary zero reference level for ΔU or ΔV.
 - Absolute reference: start with all charge infinitely far away and set $U_i = 0$, then we have U = -W and $V = -W_{\infty}/q$ at any point in an electric field, where W_{∞} is the work done by the electric field on a charged particle as that particle moves in from infinity to point f.
- □ SI Unit of electric potential: Volt (V)

1 volt = 1 joule per coulomb 1 J = 1 VC and 1 J = 1 N m 1 N/C = (1 N/C)(1 VC/J)(1 J/Nm) = 1 V/m 1 eV = e(1 V) = (1.60×10⁻¹⁹ C)(1 J/C) = 1.60×10⁻¹⁹ J

- Electric field:
- Electric energy:

Potential Differencein a Uniform Electric Fielddought#11ffor

Equipotential Surface

- □ The name equipotential surface is given to any surface consisting of a continuous distribution of points having the same electric potential.
- Equipotential surfaces are always perpendicular to electric field lines.
- No work is done by the electric field on a charged particle while moving the particle along an equipotential surface.

Analogy to Gravity

- The equipotential surface is like the "height" lines on a topographic map.
- Following such a line means that you remain at the same height, neither going up nor going down—again, no work is done.

Work: positive or negative?

Ex:V1=100 V, V2=80 V, V3=60 V, V4=40 V. W_{I} , W_{II} , W_{III} and W_{IV} are A. $W_{I} = W_{II}$

- B. W_{III} is not equal to zero
- C. W_{II} equals to zero
- $\mathsf{D}. \qquad \mathsf{W}_{\mathrm{III}} = \mathsf{W}_{\mathrm{IV}}$
- E. W_{IV} is positive

