Physics 122: Electricity \& Magnetism - Lecture 8 Electric Potential

Baris EMRE

Potential due to a group of point charges

- Use superposition

$$
V=-\int_{\infty}^{r} \vec{E} \cdot d \vec{s}=-\sum_{i=1}^{n} \int_{\infty}^{r} \vec{E}_{i} \cdot d \vec{s}=\sum_{i=1}^{n} V_{i}
$$

- For point charges

$$
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}
$$

\square The sum is an algebraic sum, not a vector sum.
\square E may be zero where V does not equal to zero.
$\square \quad \mathrm{V}$ may be zero where E does not equal to zero.

Electric Field and Electric Potential

4. Which of the following figures have $\mathrm{V}=0$ and

$\mathrm{E}=0$ at red point?

A

C

D

B

Potential due to a Continuous Charge Distribution

\square Find an expression for dq:

- $d q=\lambda d /$ for a line distribution
- $d q=\sigma d A$ for a surface distribution
- $d q=\rho d V$ for a volume distribution
\square Represent field contributions at P due to point charges dq located in the distribution.

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r}
$$

- Integrate the contributions over the whole distribution, varying the displacement as needed,

$$
V=\int d V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}
$$

Example: Potential Due to a Charged Rod

- A rod of length L located along the x axis has a uniform linear charge density λ. Find the electric potential at a point P located on the y axis a distance d from the origin.
- Start with $d q=\lambda d x$

$$
d V=\frac{1}{4 \pi \varepsilon_{0}} \frac{d q}{r}=\frac{1}{4 \pi \varepsilon_{0}} \frac{\lambda d x}{\left(x^{2}+d^{2}\right)^{1 / 2}}
$$

- then,

$$
\begin{aligned}
& V=\int d V=\int_{0}^{L} \frac{\lambda}{4 \pi \varepsilon_{0}} \frac{d x}{\left(x^{2}+d^{2}\right)^{1 / 2}}=\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\ln \left(x+\left(x^{2}+d^{2}\right)^{1 / 2}\right)\right]_{0}^{L} \\
& =\frac{\lambda}{4 \pi \varepsilon_{0}}\left[\ln \left(L+\left(L^{2}+d^{2}\right)^{1 / 2}\right)-\ln d\right]
\end{aligned}
$$

$$
V=\frac{\lambda}{4 \pi \varepsilon_{0}} \ln \left[\frac{L+\left(L^{2}+d^{2}\right)^{1 / 2}}{d}\right]
$$

(a)

(b)

Potential Due to a Charged Isolated Conductor

\square According to Gauss' law, the charge resides on the conductor's outer surface.

- Furthermore, the electric field just outside the conductor is perpendicular to the surface and field inside is zero.
- Since

$$
V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}=0
$$

- Every point on the surface of a charged conductor in equilibrium is at the same electric potential.
- Furthermore, the electric potential is constant everywhere inside the conductor and equal to its value to its value at the surface.
$V_{B}-V_{A}=-\int_{A}^{B} \vec{E} \cdot d \vec{s}=0$
(1)

Calculating the Field from the Potential

- Suppose that a positive test charge q_{0} moves through a displacement ds from on equipotential surface to the adjacent surface.
- The work done by the electric field on the test charge is $W=-d U=-q_{0} d V$.
- The work done by the electric field may also be written as $W=q_{0} \vec{E} \cdot d \vec{s}$
- Then, we have

$$
-q_{0} d V=q_{0} E(\cos \theta) d s \quad E \cos \theta=-\frac{d V}{d s}
$$

\square So, the component of E in any direction is the negative of the rate at which the electric potential changes with distance in that direction.

$$
E_{s}=-\frac{\partial V}{\partial s}
$$

- If we know $\mathrm{V}(\mathrm{x}, \mathrm{y}, \mathrm{z})$,

$$
E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}
$$

Electric Potential Energy of a System of Point Charges

$$
\begin{array}{cc}
\Delta U=U_{f}-U_{i}=-W & W=\vec{F} \cdot \Delta \vec{r}=q \vec{E} \cdot \Delta \vec{r} \\
W_{a p p}=-W & \Delta U=U_{f}-U_{i}=W_{a p p}
\end{array}
$$

- Start with (set $\mathrm{U}_{\mathrm{i}}=0$ at ∞ and $\mathrm{U}_{\mathrm{f}}=\mathrm{U}$ at r)

$$
V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1}}{r}
$$

- We have

$$
U=q_{2} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

- If the system consists of more than two charged particles, calculate U for each pair of charges and sum the terms algebraically.
$U=U_{12}+U_{13}+U_{23}=\frac{1}{4 \pi \varepsilon_{0}}\left(\frac{q_{1} q_{2}}{r_{12}}+\frac{q_{1} q_{3}}{r_{13}}+\frac{q_{2} q_{3}}{r_{23}}\right)$

Summary

\square Electric Potential Energy: a point charge moves from i to f in an electric field, the change in electric potential energy is
\square Electric Potential Difference between two points i and f in an electric field:

- Equipotential surface: the points on it all have the same electric potential. No work is done while moving charge on it. The electric field is always directed perpendicularly to corresponding equipotential surfaces.
\square Finding V from E:
\square Potential due to point charges: $\quad \Delta V \equiv \frac{\Delta U}{q_{0}}=-\int_{i}^{\mu} \vec{E} \cdot d \vec{s}$
\square Potential due to a collection of point charges:

$$
V=\sum_{i=1}^{n} V_{i}=\frac{1}{4 \pi \varepsilon_{0}} \sum_{i=1}^{n} \frac{q_{i}}{r_{i}}
$$

\square Potential due to a continuous charge distribution:
\square Potential of a charged conductor is constant everywhere inside the conductor and equal to its value to its value at the surface.

- Calculatiing E from V: $\quad E_{s}=-\frac{\partial V}{\partial s} \quad E_{x}=-\frac{\partial V}{\partial x} \quad E_{y}=-\frac{\partial V}{\partial y} \quad E_{z}=-\frac{\partial V}{\partial z}$
\square Electric potential energy of system of point charges:

$$
\Delta U=U_{f}-U_{i}=-W
$$

$$
\Delta V=V_{f}-V_{i}=\frac{U_{f}}{q}-\frac{U_{i}}{q}=\frac{\Delta U}{q}
$$

$$
V(r)=\frac{1}{4 \pi \varepsilon_{0}} \frac{q}{r}
$$

$$
V=\int d V=\frac{1}{4 \pi \varepsilon_{0}} \int \frac{d q}{r}
$$

$$
U=q_{2} V=\frac{1}{4 \pi \varepsilon_{0}} \frac{q_{1} q_{2}}{r}
$$

