GENETIC METHODOLOGIES

CONVENTIONAL CYTOGENETICS

MOLECULAR CYTOGENETICS

MOLECULAR GENETICS

Methods of Chromosome Analysis

G banded metaphase spread

Cytogenetic nomenclature

Term	Explanation	Example
Р	Short arm	
q	Long arm	
cen	Centromere	
del	Deletion	46,XX,del(1)(q21)
dup	Duplication	46,XY,dup(13)(q14)
fra	Fragile site	
i	Isochromosome	46,X,i(Xq)
inv	Inversion	46,XX,inv(9)(p12q12)
ish	In-situ hybridization	
r	Ring	46,XX,r(21)
t	Translocation	46,XY,t(2;4)(q21;q21)
ter	Terminal or end	Tip of arm; e.g., pter or gter
1	Mosaicism	46,XY/47,XXY
+ or –	Sometimes used after a chromosome arm in text to indicate gain or loss of part of that chromosome	46,XX,5p-

X chromosome idiogram showing arms regions and bands

Chromosome banding techniques

a) G banding giemsa AT rich regions b) Q banding quinacrine AT rich regions c) R banding reverse GC rich regions d) C banding
centromere
Ag-NOR
AT rich satellite regions
Satellite regions

Fluorescence in situ hybridization

(FISH) is a molecular cytogenetic technique that uses **fluorescent** probes that bind to only those parts of a nucleic acid sequence with a high degree of sequence complementarity. ... **Fluorescence** microscopy can be used to find out where the **fluorescent** probe is bound to the chromosomes.

SPECTRAL KARYOTYPING (SKY) with MULTICOLOR FISH PROBES

FISH centromere probe for chromosome

46,XY

Trisomy 18

Trisomy 21

Simultaneous use of three FISH probes

- 1. 18. chr blue , X green, Y red
- 2. 3 blues one green
- 3. 3 reds, two greens

FISH

Two color probe For Di George syndrome

22q11.2 deletion

22q distal green22q proximal redlocus spesific prob

FISH probes for Subtelomeric regions 1p deletion

p : green q : red

FISH

Locus spesific probe For SRY locus

XX male is SRY⁺ t(X;Y)

Applications of DNA technology

Gene structure/mapping/function Population genetics Clinical genetics Preimplantation genetic diagnosis Prenatal diagnosis Presymptomatic diagnosis Carrier detection Diagnosis and pathogenesis of disease Genetic Acquired—infective, malignant Biosynthesis (e.g., insulin, growth hormone, interferon, immunization) Treatment of genetic disease Gene therapy Agriculture (e.g., nitrogen fixation)

Development of DNA technology

Decade	Development	Examples of Application
1980s	Recombinant DNA technology, Southern blot, and Sanger sequencing	Recombinant erythropoietin (1987), DNA fingerprinting (1984), and DNA sequence of Epstein–Barr virus genome (1984)
1990s	Polymerase chain reaction (PCR)	Diagnosis of genetic disorders
2000s	Capillary sequencing and microarray technology	Human genome sequence (2003)
2010s	Next-generation sequencing	First acute myeloid leukemia (AML) cancer genome sequenced (2008)
		at a cost of approx. \$1000 (2014)

PCR (Polymerase Chain Reaction)

PCR (Polymerase Chain Reaction)

	50µl Reaction	Final Concentration
Template DNA	2.0µl	-
dNTPs	4.0µl	0.2mM each
Magnesium Chloride	6.0µl	2mM
Primer	3.0µl each	0.6uM each
Taq Polymerase	0.2µl	1.5 units
PCR Buffer II	5.0µl	1X
PCR-quality water	30µl	-

Table 5.2Some Examples of RestrictionEndonucleases With Their Nucleotide RecognitionSequence and Cleavage Sites

		Cleavage Site	e
Enzyme	Organism	5′	3′
BamHI	Bacillus amyloliquefaciens H	$G\cdot G \ A \ T \ C \ C$	
EcoRI	Escherichia coli RY 13	G·AATTC	
Haelll	Haemophilus aegyptius	GG·CC	
HindIII	Haemophilus influenzae Rd	A · A G C T T	
Hpal	Haemophilus parainfluenzae	GTT·AAC	
Pstl	Providencia stuartii	CTGCA·G	
Smal	Serratia marcescens	$C\;C\;C\;C\;G\;G\;G\;G$	
Sall	Streptomyces albus G	$G \cdot T C G A C$	

FIGURE 5.9 Detection of the HFE gene mutation C282Y by restriction fragment length polymorphisms (RFLP). The normal 387-bp polymerase chain reaction (PCR) product is digested with *Rsal* to give products of 247 bp and 140 bp. The C282Y mutation creates an additional recognition site for *Rsal*, giving products of 247 bp, 111 bp, and 29 bp. Lane 1 shows a 100-bp ladder-size standard. Lanes 2–4 show patients homozygous, heterozygous, and normal for the C282Y mutation, respectively. Lane 5 is the negative control. (*Courtesy N. Goodman, Department of Molecular Genetics, Royal Devon and Exeter Hospital, Exeter, UK.*)

FIGURE 5.8 Amplification of the GAA repeat expansion mutation by polymerase chain reaction (PCR) to test for Friedreich ataxia. Products are stained with ethidium bromide and electrophoresed on a 1.5% agarose gel. Lanes 1 and 8 show 500-bp ladder-size standards, Lanes 2 and 4 show patients with homozygous expansions, Lanes 3 and 6 show unaffected controls, Lane 5 shows a heterozygous expansion carrier, and Lane 7 is the negative control. (Courtesy K. Thomson, formerly at the Department of Molecular Genetics, Royal Devon and Exeter Hospital, Exeter, UK.)

SOUTHERN BLOT

Basics Comperative Genomic Hybridization (CGH)

CGH PLOTS FOR CHROMOSOME 1 AND X

Real Time PCR

In a real time PCR protocol, a fluorescent reporter molecule is used to monitor the PCR as it progresses. The fluorescence emitted by the reporter molecule manifolds as the PCR product accumulates with each cycle of amplification. Based on the molecule used for the detection, the real time PCR techniques can be categorically placed under two heads:

1. Non-specific Detection using DNA Binding Dyes

2. Specific Detection Target Specific Probes

Real Time PCR Applications Include

- 1. Quantitative mRNA expression studies.
- 2. DNA copy number measurements in genomic or viral DNAs.
- 3 . Allelic discrimination assays or SNP genotyping.
- 4 . Verification of microarray results.
- 5 . Drug therapy efficacy.
- 6 . DNA damage measurement.

REAL TIME (QUNATITATIVE) PCR

Real Time PCR/Spectrofluorometer

Real Time PCR/Detection

Non-Specific Detection Fluorescent dye

Cyber Green

Specific Detection Detective Probe

TaqMan

Real Time PCR/Non-Specific Detection

Absorbs 497 nm Emits 520 nm

Real Time PCR/Specific Detection

Quantitative rt-PCR

Allelic Discrimination Plot

SANGER SEQUENCING (Dideoxy Sequencing / chain termination)

в

NEXT GENERATION (CLONAL) SEQUENCING MASSIVELY PARALLEL SEQUENCING

FIGURE 5.16 **A**, Aligning individual paired-end reads to the reference genome. Nucleotides in the reads that differ from the reference sequence are marked. (a) A region with poor coverage. (b) The variants at these positions are most likely sequencing errors. (c) At this position the subject is homozygous for the A alleles. A real example would have longer reads and greater read depth. **B**, Aligned reads with a heterozygous deletion. Reads with an 8-bp deletion identified are marked with a black bar. Images produced using the IGV software package. (*Courtesy Dr M. Wakeling, University of Exeter Medical School, UK.*)

Table 5.4Sanger Sequencing Compared toNext-Generation 'Clonal' Sequencing

Sanger Sequencing	Next-Generation 'Clonal' Sequencing
One sequence read per sample	Massively parallel sequencing
500–1000 bases per read	100–400 bases per read
Approx. 1 million bases per day per machine Approx. \$1 per 1000 bases	Approx. 2 billion bases per day per machine Approx. \$1 per 5,000,000 bases

DNA MICROARRAY

DNA MICROARRAY

Pathways toward human disease gene identification

Filtering variants obtained by exome and genome sequencing to identify pathogenic mutation causing rare diseases.

FIGURE 4.5 Strategies for disease gene identification by exome or genome sequencing. The red dashed boxes indicate individuals within pedigrees whose samples are analyzed by exome or genome sequencing. (A) Trio analysis of an affected patient and their unrelated, unaffected parents to detect heterozygous *de novo* mutations. (B) Linkage approach of sequencing the two most distantly related affected individuals in a dominant pedigree to identify shared heterozygous variants that include the pathogenic mutation. (C) Analysis of a proband from a consanguineous pedigree to identify homozygous variants in a gene within a homozygous region. (D) Analysis of a proband born to unaffected, unrelated parents to identify compound heterozygous mutations in a single gene. (E) Cohort analysis of unrelated, affected individuals who share a distinctive phenotype to identify heterozygous mutations in the same gene.

PCR https://www.youtube.com/watch?v=oE-QpvoNnWE

GEL ELECTROPHORESIS

https://www.youtube.com/watch?v=vq759wKCCUQ https://www.youtube.com/watch?v=8RBs0Ghg_48

RFLP

https://www.youtube.com/watch?v=MQnsCEhPFTU

MLPA

https://www.youtube.com/watch?v=gfLJxKuqleY

SANGER SEQUENCING https://www.youtube.com/watch?v=FhIKYsc 9 A

NGS

https://www.youtube.com/watch?v=shoje_9IYWc