

- 1) Organic Chemistry Structure and Function, K. Peter C. Vollhardt, Neil Schore, 6th Edition
- 2) Organic Chemistry, T. W. Graham Solomons, Craig B. Fryhle
- Organic Chemistry, Jonathan Clayden Nick Greeves Stuart Warren, 2th Edition
- 4) Organic Chemistry, John E. McMurry,8th. Edition
- 5) Reaksiyon Mekanizmaları: Metin Balcı,
 2.Baskı.

1.Pericyclic Reactions

- 1.1 Introduction
- 1.2 Characteristic of Pericyclic Reactions
- 1.3 Types of Pericyclic Reactions
 - **1.3.1** Electrocyclic Reactions
 - 1.3.2 Cycloaddition reactions
 - 1.3.2.1 Diels-Alder reaction
 - 1.3.3 Sigmatropic Reactions

1.Pericyclic Reactions

1.1 Introduction

In organic chemistry, it is possible to group reactions into three groups.

1.Polar reactions

$$RCH_2 - X + H: \ddot{O}:^- \longrightarrow RCH_2 - OH + X^-$$

2. Radical reactions

$$RCH_2 + CI-CI \longrightarrow RCH_2-CI + \cdot CI$$

3. Pericyclic reactions

A pericyclic reaction, a reaction that occurs as a result of reorganizing the electrons in the reactant(s)

1.2 Characteristic of Pericyclic Reactions

- ✓ The polarity of the solvent generally has no effect on the reaction rate and product distribution.
- ✓ They are single-step reactions.
- ✓ No intermediate occur
- \checkmark The transition state is cyclic.
- ✓ Pericyclic reactions require light or heat
- ✓ They are completely stereospecific
- ✓ Pericyclic reactions are concerted reactions
- ✓ Changes in the number of pi and sigma bonds distinguish pericyclic reactions from each other.

	Change in the number of σ bonds	Change in the number of π bonds
Cycloaddition	+2	-2
Electrocyclic	+1	-1
Sigmatropic	0	0

- ✓ Pericyclic reactivity can be understood in terms of frontier molecular orbital (FMO) theory and the outcome of reactions can be predicted using the Woodward-Hoffmann rules.
- ✓ Woodward-Hoffmann rules: A pericyclic reaction can take place only if the symmetries of the reactant MOs are the same as the symmetries of the product MOs.
- ✓ During a pericyclic reaction, orbitals in the same phase overlap and make a bond
- ✓ There is no bond with the overlap of the orbitals in different phases.
- ✓ If the symmetries of both reactant and product orbitals match up, the reaction is said to be symmetry-allowed.
- ✓ If the symmetries of reactant and product orbitals don't correlate, the reaction is symmetry-disallowed.
 For example

In order to overlap the two end orbitals of the HOMO to form the new σ -bond, they can be turned in two different directions:

✓ Conrotatory Orbital Rotation

✓ Disrotatory Orbital Rotation

Only the symmetry of the HOMO is important in determining the course of the reaction

1.3 Types of Pericyclic Reactions

- 1. Electrocyclic Reactions: Intramolecular ring closure and openings
- 2. Cycloadditions: The Diels-Alder reaction, a [4+2] cycloaddition

3. Sigmatropic rearrangement

1.3.1 Electrocyclic Reactions

- \checkmark An intramolecular reaction
- ✓ A cyclic compound is formed

(Z)-hexa-1,3,5-triene

Cyclohexa-1,3-diene

Electrocyclic reactions are reversible

Buta-1,3-diene

Examples:

Trans-3,4-dimethylcyclobut-1-ene

(2Z,4E)-hexa-2,4-diene

Cis-3,4-dimethylcyclobut-1-ene

(2E,4Z,6E)-octa-2,4,6-triene

(5R,6S)-5,6-dimethylcyclohexa-1,3-diene

CH₃

^{"""}CH₃

CH3

(2E,4Z,6E)-octa-2,4,6-triene

(5R,6R)-5,6-dimethylcyclohexa-1,3-diene

 CH_3

(2Z,4Z,6E)-octa-2,4,6-triene

(5R,6S)-5,6-dimethylcyclohexa-1,3-diene

1.3.2 Cycloaddition Reactions

hv

✓ Two different p bond-containing molecules react

to form a cyclic compound

- ✓ Reactions are classified according to the number of π-bonds present in the reactants and directly involved in the reaction.
 - ✓ Cycloaddition reactions can be either thermally allowed or prohibited, as well as photochemical allowed or prohibited, as in electrocyclic reactions.
 - ✓ Three important classes of cycloaddition reactions

(i) Diels-Alder reaction: [4+2] Cycloaddition

(ii) [2+2] Cycloaddition

(iii) [1,3]-Dipolar cycloaddition

 \checkmark σ -Bonds formation can happen in two ways:

✓ Suprafacial cycloadditions

✓ Antarafacial cycloadditions

1.3.2.1 Diels-Alder Reaction

The Diels-Alder cycloaddition reaction is a pericyclic process that takes place between a diene (four π electrons) and a dienophile (two π electrons) to yield a cyclohexene product.

The resulting reaction is a cyclization reaction

Many thousands of examples of Diels-Alder reactions are known.

Maleic anhydride

1.3.3 Sigmatropic Reactions

 ✓ Sigmatropic rearrangements are also unimolecular pericyclic reactions.

- \checkmark A σ -bonded substituent, atom or group migrates across a π electron system from one position to another
- \checkmark A σ bond is broken in the reactant, a new σ bond is formed in the product, and the π bonds rearrange
- ✓ Sigmatropic reactions; they work under thermal and photochemical conditions and do not require any catalyst.

3-Methylhexa-1,5-diene

(E)-hepta-1,5-diene

Different types of sigmatropic rearrangement reactions are

- [2,3] sigmatropic rearrangement
- [3,3] sigmatropic rearrangement
- [1,3] sigmatropic rearrangement
- [1,5] sigmatropic rearrangement
- [1,7] sigmatropic rearrangement

[1,5] sigmatropic rearrangement

[1,3] Hydrogen Shift

[1,7] Hydrogen Shift

[3,3] Claisen rearrangement

[3,3] Cope rearrangement

