EEE201 Circuit Analysis II

Ankara University

Faculty of Engineering

Electrical and Electronics Engineering Department

Ankara University Electrical and Electronics Eng. Dept. EEE201

Sinusoidal Steady-State Analysis

EEE201 Circuit Analysis II

Lecture 1

Agenda

- Sinusoidal Source
- Sinusoidal Response

Sinusoidal Source

A sinusoidal voltage:

V

 $w = 2\pi f = 2\pi/T$ (radians/second)

Sinusoidal Source

Changing the phase angle Ø shifts the sinusoidal function along the time axis:

Sinusoidal Source

The rms value of a periodic function is defined as the square <u>r</u>oot of the <u>m</u>ean value of the <u>s</u>quared function:

$$V_{rms} = \sqrt{\frac{1}{T} \int_{t_0}^{t_0 + T} V_m^2 \cos^2(wt + \emptyset) dt}$$

$$V_{rms} = \frac{V_m}{\sqrt{2}}$$

T 7

Sinusoidal Response

$$v_s = V_m \cos(wt + \emptyset)$$

For $t \geq 0$,

$$L\frac{di}{dt} + Ri = V_m \cos(wt + \emptyset)$$

Sinusoidal Response

$$i = \frac{-V_m}{\sqrt{R^2 + w^2 L^2}} \cos(\phi - \theta) e^{-(R/L)t} + \frac{V_m}{\sqrt{R^2 + w^2 L^2}} \cos(wt + \phi - \theta)$$

The first term \rightarrow *Transient component*

The second term \rightarrow *Steady* – *state component*

Reference

 Electric Circuits, Tenth Edition, James W. Nilsson, Susan A. Riedel Pearson, 2015