EEE201 Circuit Analysis II

Ankara University
Faculty of Engineering
Electrical and Electronics Engineering Department

Sinusoidal Steady-State Analysis

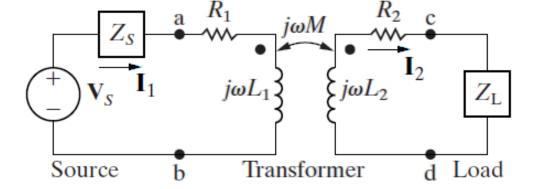
EEE201 Circuit Analysis II

Lecture 4

Agenda

- Linear Transformer
- Ideal Transformer

Linear Transformer

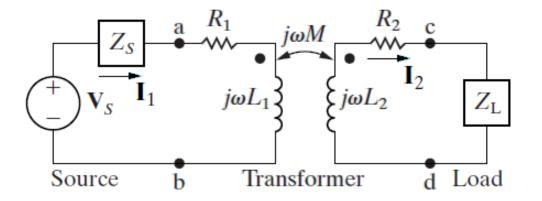

 R_1 : the resistance of the primary winding

 R_2 : the resistance of the secondary winding

 L_1 : the self-inductance of the primary winding

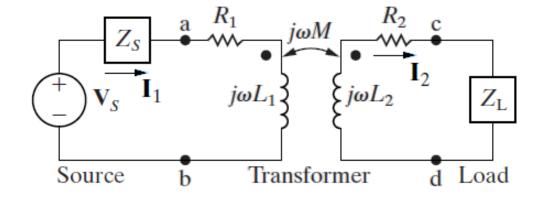
 L_2 : the self-inductance of the secondary winding

M: the mutual inductance


Linear Transformer

$$Z_{11} = Z_s + R_1 + jwL_1$$

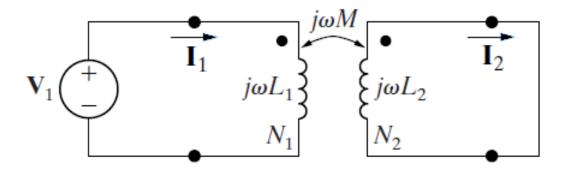
$$Z_{22} = R_2 + jwL_2 + Z_L$$


$$\boldsymbol{I}_1 = \frac{Z_{22}}{Z_{11}Z_{22} + w^2M^2} \boldsymbol{V}_S$$

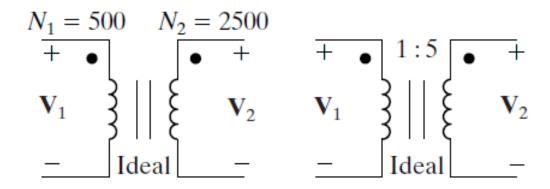
$$\boldsymbol{I}_2 = \frac{jwM}{Z_{22}} \boldsymbol{I}_1$$

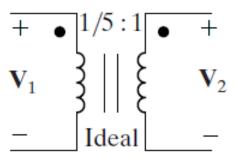
Linear Transformer

$$Z_{ab} = R_1 + jwL_1 + Z_r$$



$$Z_r = \frac{w^2 M^2}{R_2 + iwL_2 + Z_T}$$
 (Reflected impedance)


Ideal Transformer


$$\frac{\boldsymbol{V}_1}{N_1} = \frac{\boldsymbol{V}_2}{N_2}$$

$$I_1 N_1 = I_2 N_2$$

Ideal Transformer

Reference

• Electric Circuits, Tenth Edition, James W. Nilsson, Susan A. Riedel Pearson, 2015