EEE201 Circuit Analysis II

Ankara University

Faculty of Engineering

Electrical and Electronics Engineering Department

Ankara University Electrical and Electronics Eng. Dept. EEE201

Sinusoidal Steady-State Power Calculations

EEE201 Circuit Analysis II

Lecture 5

Agenda

- Instantaneous Power
- Average and Reactive Power
- The rms Value
- Complex Power

Instantaneous Power

$$v = V_m \cos(wt + \theta_v)$$

$$i = I_m \cos(wt + \theta_i)$$

$$i = V_m \cos(wt + \theta_i)$$

$$v = V_m \cos(wt + \theta_v - \theta_i)$$
 and $i = I_m \cos(wt) \Rightarrow$

$$p = v \cdot i$$

= $\frac{V_m I_m}{2} \cos(\theta_v - \theta_i) + \frac{V_m I_m}{2} \cos(\theta_v - \theta_i) \cos(2wt) - \frac{V_m I_m}{2} \sin(\theta_v - \theta_i) \sin(2wt)$

Average and Reactive Power

$$p = P + P\cos(2wt) - Q\sin(2wt)$$

Average power:
$$P = \frac{V_m I_m}{2} \cos(\theta_v - \theta_i)$$
 (watt, W)

Reactive power:
$$Q = \frac{V_m I_m}{2} \sin(\theta_v - \theta_i)$$
 (volt-amp reactive, VAR)

Average and Reactive Power

Power for **purely resistive** circuits ($\theta_v = \theta_i$)

 $p = P + P\cos(2wt)$

Power for **purely inductive** circuits ($\theta_v - \theta_i = +90^\circ$)

 $p = -Q\sin(2wt)$

Power for **purely capacitive** circuits ($\theta_v - \theta_i = -90^\circ$)

 $p = -Q\sin(2wt)$

Average and Reactive Power

Power factor: $pf = \cos(\theta_v - \theta_i)$

Reactive factor: $rf = sin(\theta_v - \theta_i)$

$$\theta_v > \theta_i \implies lagging \ power \ factor$$

 $\theta_v < \theta_i \implies leading \ power \ factor$

The rms Value (or Effective Value)

$$P = \frac{1}{T} \int_{t_0}^{t_0 + T} p \, dt = \frac{1}{T} \int_{t_0}^{t_0 + T} \frac{V_m^2 \cos^2(wt + \phi_v)}{R} \, dt$$
$$P = \frac{V_r^2 ms}{R}$$

$$V_m \cos(\omega t + \theta_v) \leqslant R$$

$$P = I_{rms}^2 R$$

Complex Power

S = P + jQ (volts-amps, VA)

$$\frac{Q}{P} = \tan \theta = \tan(\theta_v - \theta_i)$$

Apparent power:

$$|S| = \sqrt{P^2 + Q^2}$$
 (volts-amps, VA)

Reference

 Electric Circuits, Tenth Edition, James W. Nilsson, Susan A. Riedel Pearson, 2015