EEE201 Circuit Analysis II

Ankara University
Faculty of Engineering
Electrical and Electronics Engineering Department

Sinusoidal Steady-State Power Calculations

EEE201 Circuit Analysis II

Lecture 6

Agenda

- Alternate Forms for Complex Power
- Maximum Power Transfer

Alternate Forms for Complex Power

$$S = \frac{1}{2} \mathbf{V} \mathbf{I}^* = \frac{1}{2} V_m I_m \angle (\theta_v - \theta_i)$$

$$S = V_{eff}I_{eff}^* = V_{eff}I_{eff} \angle (\theta_v - \theta_i)$$

Alternate Forms for Complex Power

$$V_{eff} = ZI_{eff}$$

$$S = P + jQ$$

$$P = |I_{eff}|^2 R = \frac{1}{2}I_m^2 R$$

$$Q = |I_{eff}|^2 X = \frac{1}{2}I_m^2 X$$

Maximum Power Transfer

$$Z_L = Z_{Th}^*$$

If the Thevenin voltage is expressed in terms of its rms amplitude, the maximum average power delivered to the load is

$$P_{max} = \frac{1}{4} \frac{|\boldsymbol{V}_{Th}|^2}{R_L}$$

Maximum Power Transfer When Z is Restricted

 R_L and X_L may be restricted to a limited range of values:

$$X_L \longrightarrow -X_{Th}$$
 and $R_L \longrightarrow \sqrt{R_{Th}^2 + (X_L + X_{Th})^2}$

The magnitude of Z_L can be varied but its phase angle cannot:

$$|Z_L| = |Z_{Th}|$$

Reference

• Electric Circuits, Tenth Edition, James W. Nilsson, Susan A. Riedel Pearson, 2015