EEE201 Circuit Analysis II

Ankara University
Faculty of Engineering
Electrical and Electronics Engineering Department

Balanced Three-Phase Circuits

EEE201 Circuit Analysis II

Lecture 8

Agenda

- Y- Δ Circuit
- Power Calculations in a Balanced Y Load
- Power Calculations in a Balanced Δ Load

Y- Δ Circuit

Single-phase equivalent circuit

Y- Δ Circuit

Phase currents:

$$
\begin{aligned}
& \boldsymbol{I}_{A B}=I_{\varnothing} \angle 0^{\circ} \\
& \boldsymbol{I}_{B C}=I_{\varnothing} \angle-120^{\circ} \\
& \boldsymbol{I}_{C A}=I_{\varnothing} \angle+120^{\circ}
\end{aligned}
$$

Line currents:

$$
\begin{aligned}
& \boldsymbol{I}_{a A}=\sqrt{3} I_{\varnothing} \angle-30^{\circ} \\
& \boldsymbol{I}_{b B}=\sqrt{3} I_{\varnothing} \angle-150^{\circ} \\
& \boldsymbol{I}_{c C}=\sqrt{3} I_{\varnothing} \angle+90^{\circ}
\end{aligned}
$$

Power Calculations in a Balanced Y Load

Average power in terms of the phase voltage and current:

$$
\begin{gathered}
V_{\emptyset}=\left|\boldsymbol{V}_{A N}\right|=\left|\boldsymbol{V}_{B N}\right|=\left|\boldsymbol{V}_{C N}\right| \\
I_{\emptyset}=\left|\boldsymbol{I}_{a A}\right|=\left|\boldsymbol{I}_{b B}\right|=\left|\boldsymbol{I}_{c C}\right| \\
\theta_{\emptyset}=\theta_{v A}-\theta_{i A}=\theta_{v B}-\theta_{i B}=\theta_{v C}-\theta_{i C} \\
P_{A}=P_{B}=P_{C}=P_{\emptyset}=V_{\emptyset} I_{\emptyset} \cos \theta_{\emptyset}
\end{gathered}
$$

Power Calculations in a Balanced Y Load

Total average power:

$$
P_{T}=3 P_{\emptyset}=3 V_{\emptyset} I_{\emptyset} \cos \theta_{\emptyset}
$$

Total average power in terms of the line voltage and current:

$$
P_{T}=\sqrt{3} V_{L} I_{L} \cos \theta_{\emptyset}
$$

Power Calculations in a Balanced Y Load

Reactive power:

$$
\begin{gathered}
Q_{\emptyset}=V_{\emptyset} I_{\emptyset} \sin \theta_{\emptyset} \\
Q_{T}=3 Q_{\emptyset}=\sqrt{3} V_{L} I_{L} \sin \theta_{\emptyset}
\end{gathered}
$$

Complex power:

$$
\begin{aligned}
& S_{\emptyset}=P_{\emptyset}+j Q_{\emptyset}=V_{\emptyset} I_{\emptyset}^{*} \\
& S_{T}=3 S_{\emptyset}=\sqrt{3} V_{L} I_{L} \angle \theta_{\emptyset}^{\circ}
\end{aligned}
$$

Power Calculations in a Balanced Δ Load

Average power in terms of the phase voltage and current:

$$
\begin{gathered}
V_{\emptyset}=\left|\boldsymbol{V}_{A B}\right|=\left|\boldsymbol{V}_{B C}\right|=\left|\boldsymbol{V}_{C A}\right| \\
I_{\emptyset}=\left|\boldsymbol{I}_{A B}\right|=\left|\boldsymbol{I}_{B C}\right|=\left|\boldsymbol{I}_{C A}\right| \\
\theta_{\emptyset}=\theta_{v A B}-\theta_{i A B}=\theta_{v B C}-\theta_{i B C}=\theta_{v C A}-\theta_{i C A} \\
P_{A}=P_{B}=P_{C}=P_{\emptyset}=V_{\emptyset} I_{\emptyset} \cos \theta_{\emptyset}
\end{gathered}
$$

Power Calculations in a Balanced Δ Load

Total average power:

$$
P_{T}=3 P_{\emptyset}=3 V_{\emptyset} I_{\emptyset} \cos \theta_{\emptyset}
$$

Total average power in terms of the line voltage and current:

$$
P_{T}=\sqrt{3} V_{L} I_{L} \cos \theta_{\emptyset}
$$

Power Calculations in a Balanced Δ Load

Reactive power:

$$
\begin{gathered}
Q_{\emptyset}=V_{\emptyset} I_{\emptyset} \sin \theta_{\emptyset} \\
Q_{T}=3 Q_{\emptyset}=3 V_{\emptyset} I_{\varnothing} \sin \theta_{\emptyset}
\end{gathered}
$$

Complex power:

$$
\begin{aligned}
& S_{\emptyset}=P_{\emptyset}+j Q_{\emptyset}=V_{\emptyset} I_{\varnothing}^{*} \\
& S_{T}=3 S_{\emptyset}=\sqrt{3} V_{L} I_{L} \angle \theta_{\emptyset}^{\circ}
\end{aligned}
$$

Reference

- Electric Circuits, Tenth Edition, James W. Nilsson, Susan A. Riedel Pearson, 2015

