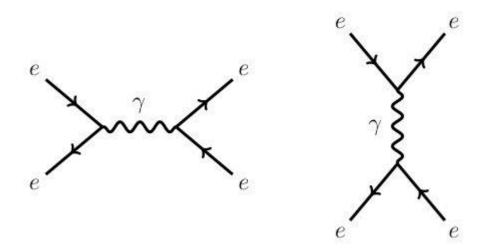
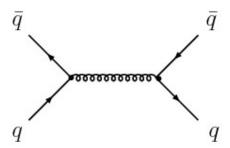
Lecture 3 : Elementary particle dynamics - 1

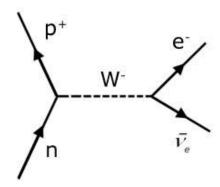

The are four fundamental forces of natüre as far as we know today.

Each of them is based on a physical theory, gravitational force has an classical theory the other have quantum theories based on local gauge interactions.

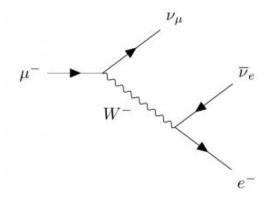
Forces	Strength	Theory	Mediator
Strong	10	QCD	Gluons
Electromagnetic	10 ⁻²	QED	Photons
Weak	10 ⁻¹³	Weak interactions	W and Z bosons
Gravitational	10 ⁻⁴⁴	Quantum gravity	? Gravitons
		Newton theory	No mediator but
			Action at a distance
		Einstein theory	No mediator
			It is spacetime curvature


Quantum electrodynamics :

Feynman diagrams for electron-electron scattering via one photon exchange.


Quantum chromodynamics:

A possible Feynman diagram for quark-antiquark scattering via one gluon exchange.



Weak interactions:

Feynman diagram for the neutron beta decay via weak W boson.

Feynman diagram for the muon decay

Homework

Solve the following problems at the end of the Chapter II of the textbook by D.Griffiths "Introduction to Elementary Particles J.Wiley)

Solve Problem 2.1

Solve Problem 2.2

Solve Problem 2.3

Solve Problem 2.4

Solve Problem 2.5

Solve Problem 2.6