Lecture 7 : Symmetries - 1

Symmetries, groups, and conservation laws

Symmetry idea in physics : Simple example even and odd functions Continuous symmetries <=> Conservation laws (Noether's Theorem)

$\underline{\text { Symmetries }}$		Conservation laws
Translation in time	$=>$	Energy conservation
Translation in space	$=>$	Linear monetum conservation
Rotation in space	$=>$	Angular momentum conservation
Gauge transformation	$=>$	Charge (in general)
$U_{e m}(1)$ global gauge trans. $=>$ Electric charge		

Some geometric examples for symmetry :

Symmetries of an eqilateral triangle

Point and Space summetries play an important role in crystallography.
Groups
Axioms of groups

Examples : Rotation group $\mathrm{SO}(3)$
Classifications og the groups :
Matrix representations of the groups
Role of the group theory and quantum mechanics
Angular momentum and Spin in Quantum Mechanics
Addition of two angular momentum operators
Clebsch-Gordon coefficients

$$
\left|j_{1} m_{1}\right\rangle\left|j_{2} m_{2}\right\rangle=\sum_{j=\left|j_{1}-j_{2}\right|}^{\left(j_{1}+j_{2}\right)} C_{m m_{1} m_{2}}^{i j_{1} j_{2}}|j m\rangle, \quad \text { with } m=m_{1}+m_{2}
$$

or

$$
|j m\rangle=\sum_{j_{1}, j_{2}} C_{m m_{1} m_{2}}^{i j_{1} j_{2}}\left|j_{1} m_{1}\right\rangle\left\langle j_{2} m_{2}\right\rangle
$$

Clebsch-Gordon coefficients for the case of $j_{1}=2$ and $j_{2}=1 / 2$
Note : A square root sign is implied for every matrix element

Examples: Possible spin values of the mesons and baryons

Spin $1 / 2$ systems :

Pauili spim matrices

$$
\hat{S}_{x}=\frac{\hbar}{2}\left(\begin{array}{ll}
0 & 1 \\
1 & 0
\end{array}\right), \quad \hat{S}_{y}=\frac{\hbar}{2}\left(\begin{array}{cc}
0 & -i \\
i & 0
\end{array}\right), \quad \hat{S}_{z}=\frac{\hbar}{2}\left(\begin{array}{cc}
1 & 0 \\
0 & -1
\end{array}\right)
$$

Singlet and triplet states.

A simple problem which teaches the very fundamentles of quantum mechanics :
a) An electron is prepared in spin up direction along the z-exis. If one measures its spin along the x -axis what would be the possible results and their probabilities?
b) Assume that the result of this measurement turns out to be $+\hbar / 2$. Now if you measure the z component of the electron's spin what would be your expectations?

Homework

Solve the following problems at the end of the Chapter IV of the textbook by D.Griffiths "Introduction to Elementary Particles J.Wiley)

Solve Problem 4.1
Solve Problem 4.2
Solve Problem 4.3
Solve Problem 4.4

Solve Problem 4.5
Solve Problem 4.6
Solve Problem 4.7
Solve Problem 4.8
Solve Problem 4.9
Solve Problem 4.10

