Lecture 12 : Dirac Equation -1

Schrödinger equation

$$
\begin{gathered}
-\frac{\hbar^{2}}{2 m} \nabla^{2} \Psi+V \Psi=i \hbar \frac{\partial \Psi}{\partial t} \\
\mathbf{p} \rightarrow-i \hbar \nabla, \quad E \rightarrow i \hbar \frac{\partial}{\partial t}
\end{gathered}
$$

Replace these operators into the relativistic energy formula

$$
E^{2}-\mathbf{p}^{2} c^{2}=m^{2} c^{4}
$$

One gets the Klein-Gordon equation :

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=\left(\frac{m c}{\hbar}\right)^{2} \psi
$$

On the other hand in four-vector notation :

$$
\partial_{\mu} \equiv \frac{\partial}{\partial x^{\mu}}
$$

If we replace it in the relativistic energy momentum relation

$$
p^{\mu} p_{\mu}-m^{2} c^{2}=0
$$

One may easily get the Klein-Gordon wave equation :

$$
-\frac{1}{c^{2}} \frac{\partial^{2} \psi}{\partial t^{2}}+\nabla^{2} \psi=\left(\frac{m c}{\hbar}\right)^{2} \psi
$$

which is second order also in time.

In order to obtain a first order relativistic wave eqaution Dirac tried to factor the energymomentum relation

$$
p^{\mu} p_{\mu}-m^{2} c^{2}=0
$$

$$
\left(p^{\mu} p_{\mu}-m^{2} c^{2}\right)=\left(\beta^{\kappa} p_{\kappa}+m c\right)\left(\gamma^{\lambda} p_{\lambda}-m c\right)
$$

One gets the Dirac equation

$$
\gamma^{\mu} p_{\mu}-m c=0
$$

Dirac matrices γ^{μ} satisfy the Dirac algebra :

$$
\left\{\gamma^{\mu}, \gamma^{\nu}\right\}=2 g^{\mu \nu}
$$

where $\mathrm{g}^{\mu \nu}$ is the Minkowski metric and the gamma matrices have the representations :

$$
\gamma^{0}=\left(\begin{array}{rr}
1 & 0 \\
0 & -1
\end{array}\right), \quad \gamma^{i}=\left(\begin{array}{cc}
0 & \sigma^{i} \\
-\sigma^{i} & 0
\end{array}\right)
$$

where σ^{i} are the 2×2 Pauli matrices.
The wavefunction is the Dirac spinor with four complex elements in general.

$$
\psi=\left(\begin{array}{l}
\psi_{1} \\
\psi_{2} \\
\psi_{3} \\
\psi_{4}
\end{array}\right)
$$

For momentum zero case, $\vec{p}=0$ one gets four independent solutions :

$$
\begin{array}{ll}
\psi^{(1)} & =e^{-i\left(m c^{2} / \hbar\right) t}\left(\begin{array}{l}
1 \\
0 \\
0 \\
0
\end{array}\right), \quad \psi^{(2)}=e^{-i\left(m c^{2} / \hbar\right) t}\left(\begin{array}{l}
0 \\
1 \\
0 \\
0
\end{array}\right) \\
\psi^{(3)}=e^{+i\left(m c^{2} / \hbar\right) t}\left(\begin{array}{l}
0 \\
0 \\
1 \\
0
\end{array}\right), \quad \psi^{(4)}=e^{+i\left(m c^{2} / \hbar\right) t}\left(\begin{array}{l}
0 \\
0 \\
0 \\
1
\end{array}\right)
\end{array}
$$

For non-zero three momentum $\vec{p} \neq 0$ case :
First express the Dirca spinor as composed of two two-spinors :
$\binom{\psi_{A}}{\psi_{B}}$

$$
\psi_{A}=\binom{\psi_{1}}{\psi_{2}}
$$

$$
\psi_{B}=\binom{\psi_{3}}{\psi_{4}}
$$

The four independent solutions are :
$u_{\mathrm{A}}=\binom{1}{0}: u_{B}=\frac{\mathrm{p} \cdot \sigma}{p^{0}+m c}\binom{1}{0}=\frac{c}{E+m c^{2}}\binom{p_{z}}{p_{x}+i p_{y}}$
$u_{A}=\binom{0}{1}: u_{B}=\frac{\mathbf{p} \cdot \sigma}{p^{0}+m c}\binom{0}{1}=\frac{c}{E+m c^{2}}\binom{p_{X}-i p_{y}}{-p_{z}}$
$u_{B}=\binom{1}{0}: u_{A}=\frac{\mathbf{p} \cdot \sigma}{p^{0}+m c}\binom{1}{0}=\frac{c}{E+m c^{2}}\binom{p_{z}}{p_{X}+i p_{Y}}$
$u_{B}=\binom{0}{1}: u_{\mathrm{A}}=\frac{\mathbf{p} \cdot \boldsymbol{\sigma}}{p^{0}+m c}\binom{0}{1}=\frac{c}{E+m c^{2}}\binom{p_{X}-i p_{y}}{-p_{z}}$
The first two of them are the particle solutions with spin up and down respectively. The other two represent the anti-particle solutions.

The bilinear covariant are :

$$
\bar{\psi} \psi \quad \bar{\psi} \gamma^{5} \psi \quad \bar{\psi} \gamma^{\mu} \psi \quad \bar{\psi} \gamma^{\mu} \gamma^{5} \psi \quad \bar{\psi} \sigma^{\mu \nu} \psi
$$

which have scalar, pseudoscalar, vector, pseudovector and tensor characters under transformations. Here $\sigma^{\mu \nu}$ matrices are :

$$
\sigma^{\mu \nu} \equiv \frac{i}{2}\left(\gamma^{\mu} \gamma^{\nu}-\gamma^{\nu} \gamma^{\mu}\right)
$$

Homework :
Solve the following problems from the textbook D.Griffiths' "Int. to Elementary Particles"

Solve Problem 7.1
Solve Problem 7.2
Solve Problem 7.3
Solve Problem 7.4
Solve Problem 7.5

