Lecture 13 : Basics of Gauge Theories -1

Lagrangian mechanics
Euler-Lagrange equations :
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Lagrangians in field teory - Klein Gordon and Dirac equations :
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a) Klein-Gordon Lagrangian
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It leads to the following relativistic wave equation for spin zero particle
with mass m :
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b) Dirac Lagrangian
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The corresponding Euler-Lagrange equation is the Dirac equation for

massive spin %2 particle :
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Also the adjoint spinor satisfies the following equation :
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Proca Lagrangian for spin-1 field :
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And it gives as Euler-Lagrange equation
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Also the Maxwell Lagrangian is :
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It leads to the ingomegeneous Maxwell equations in covarien form :
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Local gauge invariance :
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The above Dirac lagrangian Remains invariant under global transformations of the phase of the -Dirac
spinor :
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where 0 is a real number. However the same Lagrangians is not invariant if 6 is a
function of the spacetime, namely local gauge transformations :

¢ — e i0(x)¢

If we add an interactin term to the Lagrangian then the total Lagrangian
becomes invariant under local gauge transformations :
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Such local transformations on the phase of the field form a U(1) Abelian group.
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Conclusion : Local gauge symmetry dictates the form of the physical
interaction.

Gauge covariant derivative

Observation : If the ordinary derivative in the original Lagrangians is replaced
by
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Then local gauge invariance is restored.

For the details examine the textbook D.Griffiths “Int. to Elementary Particles”
J.Wiley Chapter 11.

Homework :

Solve the following problems from the textbook D.Griffiths’ “Int. to
Elementary Particles”

Solve Problem 11.1
Solve Problem 11.2
Solve Problem 11.3
Solve Problem 11.4

Solve Problem 11.5



