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3-FLUID STATICS 

 

3.1.Pressure at a Point 

 

Pressure is the compressive force per unit area, and it gives the impression of 

being a vector. However, pressure at any point in a fluid is the same in all 

directions. That is, it has magnitude but not a specific direction, and thus it is a 

scalar quantity. This can be demonstrated by considering a small wedge-shaped 

fluid element of unit length (into the page) in equilibrium, as shown in Fig.3.3. 

The mean pressures at the three surfaces are Ps Py, and Pz, and the force acting on 

a surface is the product of mean pressure and the surface area. 

 

 
 

Figure 3.3. Forces on an arbitrary wedge-shaped element of fluid. Where and 

Ps Py, and Pz, are the average pressures on the faces, and 𝜸 and 𝝆 are the fluid 

specific weight and density, respectively, and 𝒂𝒚, 𝒂𝒛 are the accelerations. 

 

𝑃𝑠 = 𝑃𝑦 = 𝑃𝑧 

 

The pressure at a point in a fluid has the same magnitude in all directions. It 

can be shown in the absence of shear forces that this result is applicable to fluids 

in motion as well as fluids at rest. The pressure at a point in a fluid at rest, or in 

motion, is independent of direction as long as there are no shearing stresses 

present. This important result is known as Pascal’s law, named in honor of Blaise 

Pascal 11623– 16622, a French mathematician who made important contributions 

in the field of hydrostatics. Thus, as shown by the Fig.3.4. at the junction of the 

side and bottom of the beaker, the pressure is the same on the side as it is on the 

bottom. 
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Figure 3.4. The pressure at a point in a fluid at rest is independent of 

direction. 

 

3.2. Basic Equation for Pressure Field 

 

Although we have answered the question of how the pressure at a point varies 

with direction, we are now faced with an equally important question—how does 

the pressure in a fluid in which there are no shearing stresses vary from point to 

point? To answer this question consider a small rectangular element of fluid 

removed from some arbitrary position within the mass of fluid of interest as 

illustrated in Fig.. There are two types of forces acting on this element: surface 

forces due to the pressure, and a body force equal to the weight of the element. 

Other possible types of body forces, such as those due to magnetic fields, will not 

be considered in this text. 

 

The resultant surface force acting on a small fluid element depends only on the 

pressure gradient if there are no shearing stresses present. 

 

−∇̂P − γ�̂� = 𝜌�̂� 

 

∇̂( ) =  
𝜕( )

𝜕𝑥
�̂� +

𝜕( )

𝜕𝑦
𝑗̂ +

𝜕( )

𝜕𝑧
�̂� 

 

∇ is the gradient or “del” vector operator. ∇𝑃is the pressure gradient (N/m3), 𝛾 is 

the specific weight (N/m3). 𝜌 is the density (kg/m3), and 𝑎 is the acceleration of 

the element (m/s2). �̂�, 𝑗̂ and �̂� are the unit vectors along the coordinate axes shown 

in Fig.3.5  

 

The above equation is the general equation of motion for a fluid in which there 

are no shearing stresses. We will use this equation when we consider the pressure 
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distribution in a moving fluid. For the present, however, we will restrict our 

attention to the special case of a fluid at rest. 

 
 

Figure 3.5. Surface and body forces acting on small fluid element. 

 

3.3. Pressure Variation in a Fluid Rest 

 

For a fluid at rest �̂� = 0 and the equation −∇̂P − γ�̂� = 𝜌�̂� reduces to 

 

−∇̂P − γ�̂� = 0     or in component form, 

 

 
𝜕𝑃

𝜕𝑥
= 0     

𝜕𝑃

𝜕𝑦
= 0   

𝜕𝑃

𝜕𝑧
= 0 

 

These equations show that the pressure does not depend on x or y. Thus, as we 

move from point to point in a horizontal plane (any plane parallel to the x–y plane), 

the pressure does not change. Since P depends only on z, the last of Equation can 

be written as the ordinary differential equation.  

 
𝑑𝑃

𝑑𝑧
= −𝛾 →  𝑑𝑃 = −𝛾𝑑𝑧 = −𝛾 ∫ 𝑑𝑧

1

1
 

 

This is the fundamental equation for fluids at rest and can be used to determine 

how pressure changes with elevation. This equation and the Figure 3.6 indicate 

that the pressure gradient in the vertical direction is negative; that is, the pressure 

decreases as we move upward in a fluid at rest. There is no requirement that be a 
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constant. Thus, it is valid for fluids with constant specific weight, such as liquids, 

as well as fluids whose specific weight may vary with elevation, such as air or 

other gases. However, to proceed with the integration of the above equation it is 

necessary to stipulate how the specific weight varies with z. 

 

 
Figure 3.6. For liquids or gases at rest, the pressure gradient in the vertical 

direction at any point in a fluid depends only on the specific weight of the 

fluid at that point. 

 

Pressure in a fluid at rest is independent of the shape or cross section of the 

container (Fig.3.7). It changes with the vertical distance, but remains constant in 

other directions. Therefore, the pressure is the same at all points on a horizontal 

plane in a given fluid.  

 

 
Figure 3.7. The pressure is the same at all points on a horizontal plane in a 

given fluid regardless of geometry, provided that the points are 

interconnected by the same fluid. 

 

 

3.3.1. Incompressible Fluid 
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Since the specific weight is equal to the product of fluid density and acceleration 

of gravity (𝛾 = 𝜌𝑔),changes in 𝛾 are caused either by a change in 𝜌 or g. For most 

engineering applications the variation in g is negligible, so our main concern is 

with the possible variation in the fluid density. In general, a fluid with constant 

density is called an incompressible fluid. For liquids the variation in density is 

usually negligible, even over large vertical distances, so that the assumption of 

constant specific weight when dealing with liquids is a good one. For this instance, 

the above equation can be directly integrated 

 
𝑑𝑃

𝑑𝑧
= −𝛾 →  ∫ 𝑑𝑃

𝑃2

𝑃1
= −𝛾𝑑𝑧 = −𝛾 ∫ 𝑑𝑧

𝑧2

𝑧1
 

 

𝑃2 − 𝑃1 = −𝛾(𝑧2 − 𝑧1) or  𝑃1 − 𝑃2 = 𝛾(𝑧2 − 𝑧1) 

 

Where;  p1 and p2 are pressures at the vertical elevations z1 and z2 as is illustrated 

in the below figure. 

 

The above equation can be written in the compact form 

 

𝑃1 − 𝑃2 = 𝛾ℎ 

𝑃1 = 𝑃2 + 𝛾ℎ 

 

Where; h is the distance, (𝑧2 − 𝑧1) , which is the depth of fluid measured 

downward from the location of P2. This type of pressure distribution is commonly 

called a hydrostatic distribution, and last equation shows that in an 

incompressible fluid at rest the pressure varies linearly with depth. The pressure 

must increase with depth to “hold up” the fluid above it. 

 

It can also be observed that the pressure difference between two points can be 

specified by the distance h since 

 

ℎ =
𝑃1 − 𝑃2

𝛾
 

 

In this case h is called the pressure head and is interpreted as the height of a 

column of fluid of specific weight 𝛾 required to give a pressure difference  𝑃1 −
𝑃2 For example, a pressure difference of 49050 Pa can be specified in terms of 

pressure head as ℎ𝑤𝑎𝑡𝑒𝑟 =49050/9810= 5 m of water (𝛾𝑤𝑎𝑡𝑒𝑟 = 9810
𝑁

𝑚3) or  

ℎ𝐻𝑔 =
49050

133416
= 0.3676 𝑚 (𝛾𝐻𝑔 = 133416 𝑁/𝑚3). 

When one works with liquids there is often a free surface it is convenient to use 

this surface as a reference plane. The reference pressure 𝑃0 would correspond to 
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the pressure acting on the free surface (which would frequently be atmospheric 

pressure), and thus if we let 𝑃2 = 𝑃0 in the above equation. It follows that the 

pressure p at any depth h below the free surface is given by the equation:  

 

𝑃 = 𝛾ℎ + 𝑃0 

 

The pressure in a homogeneous, incompressible fluid at rest depends on the depth 

of the fluid relative to some reference plane, and it is not influenced by the size or 

shape of the tank or container in which the fluid is held. Thus the pressure is the 

same at all points along the line AB even though the containers may have the very 

irregular shapes shown in the Fig. 3.8. The actual value of the pressure along AB 

depends only on the depth, h, the surface pressure, p0, and the specific weight, 

𝛾,of the liquid in the container. 

 
Figure 3.8. Fluid pressure in containers of arbitrary shape. 

 

Example: Because of a leak in a buried gasoline storage tank, water has seeped 

in to the depth shown in the below figure. The specific gravity of the gasoline is 

SG= 0.68. Determine the pressure at the gasoline–water interface and at the 

bottom of the tank. Express the pressure in units of Pa and as a pressure head in 

meter of water. 
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Solution: Since we are dealing with liquids at rest, the pressure distribution will 

be hydrostatic, and therefore the pressure variation can be found from the 

equation: 

  

𝑃 = 𝛾ℎ + 𝑃0 

 

With 𝑃0 corresponding to the pressure at the free surface of the gasoline, then 

the pressure at the interface is 

 

𝑆𝐺 =
𝜌𝑔𝑎𝑠𝑜𝑙𝑖𝑛𝑒

𝜌𝑤𝑎𝑡𝑒𝑟
 

 

𝑃1 = 𝜌𝑔𝑔ℎ + 𝑃0 = 𝑆𝐺𝑔 𝜌𝑤𝑔ℎ + 𝑃0 = 0.68×1000×9.81×5 + 𝑃0 

 

𝑃1 = 33354 + 𝑃0 

 

If we measure the pressure relative to atmospheric pressure (gage pressure), it 

follows that 𝑃0 = 0 and therefore 

 

𝑃1 = 33354 𝑃𝑎 

 

ℎ =
33354 𝑃𝑎

9810 𝑁/𝑚3
= 3.4 𝑚 

 

We can now apply the same relationship to determine the pressure at the tank 

bottom; that is, 

 

𝑃2 = 𝛾𝑤 ℎ𝑤 + 𝑃1 = 9810×1 + 33354 

 

𝑃2 = 43164 𝑃𝑎 
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ℎ =
43164 𝑃𝑎

9810 𝑁/𝑚3
= 4.4 𝑚 

 

Observe that if we wish to express these pressures in terms of absolute pressure, 

we would have to add the local atmospheric pressure (in appropriate units) to the 

previous results. 

 

For sea level, the pressures become; 

 

𝑃1𝑏 = 33354 + 101325 = 134679 𝑃𝑎 

 

𝑃2𝑎 = 43164 + 101325 = 144489 𝑃𝑎 

 

Hydraulic Jacks 

 

A consequence of the pressure in a fluid remaining constant in the horizontal 

direction is that the pressure applied to a confined fluid increases the pressure 

throughout by the same amount. This is called Pascal’s law, after Blaise Pascal 

(1623–1662). Pascal also knew that the force applied by a fluid is proportional to 

the surface area. He realized that two hydraulic cylinders of different areas could 

be connected, and the larger could be used to exert a proportionally greater force 

than that applied to the smaller. “Pascal’s machine” has been the source of many 

inventions that are a part of our daily lives such as hydraulic brakes and lifts. This 

is what enables us to lift a car easily by one arm, as shown in Fig.3.9. Noting that 

P1 = P2 since both pistons are at the same level (the effect of small height 

differences is negligible, especially at high pressures), the ratio of output force to 

input force is determined to be 

 

𝑃1 = 𝑃2 →
𝐹1

𝐴1
=

𝐹2

𝐴2
→

𝐹1

𝐹2
=

𝐴1

𝐴2
 

 

The area ratio A2 /A1 is called the ideal mechanical advantage of the hydraulic 

lift. Using a hydraulic car jack with a piston area ratio of A2 /A1 = 10, for example, 

a person can lift a 1000-kg car by applying a force of just 100 kgf (= 908 N). 
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Figure 3.9. Lifting of a large weight by a small force by the application of 

Pascal’s law. 

 

The required equality of pressures at equal elevations throughout a system is 

important for the operation of hydraulic jacks (Fig.3.10a), lifts, and presses, as 

well as hydraulic controls on aircraft and other types of heavy machinery. The 

fundamental idea behind such devices and systems is demonstrated in Fig. 3.10b. 

A piston located at one end of a closed system filled with a liquid, such as oil, can 

be used to change the pressure throughout the system, and thus transmit an applied 

force 𝐹1to a second piston where the resulting force is F2. Since the pressure p 

acting on the faces of both pistons is the same (the effect of elevation changes is 

usually negligible for this type of hydraulic device), it follows that 

 

𝐹2 = 𝐹1

𝐴2

𝐴1
 

 

The piston area A2 can be made much larger than A1 and therefore a large 

mechanical advantage can be developed; that is, a small force applied at the 

smaller piston can be used to develop a large force at the larger piston. The applied 

force could be created manually through some type of mechanical device, such as 

a hydraulic jack, or through compressed air acting directly on the surface of the 

liquid, as is done in hydraulic lifts commonly found in service stations. 

 

 



11 

 

 
Figure  3.10. (a) Hydraulic jack, (b) Transmission of fluid pressure. 

 

3.3.2. Compressible Fluid 

 

We normally think of gases such as air, oxygen, and nitrogen as being 

compressible fluids since the density of the gas can change significantly with 

changes in pressure and temperature. Thus, it is necessary to consider the possible 

variation in before the equation can be integrated. The specific weights of 

common gases are small when compared with those of liquids. For example, the 

specific weight of air at sea level and is whereas the specific weight of water under 

the same conditions is Since the specific weights of gases are comparatively small, 

it follows from  
𝑑𝑃

𝑑𝑧
= −𝛾 that the pressure gradient in the vertical direction is 

correspondingly small, and even over distances of several hundred feet the 

pressure will remain essentially constant for a gas. This means we can neglect the 

effect of elevation changes on the pressure in gases in tanks, pipes, and so forth 

in which the distances involved are small. 

 

For those situations in which the variations in heights are large, on the order of 

thousands of feet, attention must be given to the variation in the specific weight. 

The equation of state for an ideal (or perfect) gas is 

 

𝜌 =
𝑃

𝑅𝑇
 

 

Where; P is the absolute pressure, R is the gas constant, and T is the absolute 

temperature. This relationship can be combined with 
𝑑𝑃

𝑑𝑧
= −𝛾 to give 
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𝑑𝑃

𝑑𝑧
= −

𝑔𝑃

𝑅𝑇
 

 

and by separating variables 

 

∫
𝑑𝑃

𝑃
= ln

𝑃2

𝑃1
= −

𝑔

𝑅
 ∫

𝑑𝑧

𝑇

𝑧2

𝑧1

𝑃2

𝑃1

 

 

Where;  g and R are assumed to be constant over the elevation change from z1 to 

z2. Although the acceleration of gravity, g, does vary with elevation, the variation 

is very small, and g is usually assumed constant at some average value for the 

range of elevation involved. 

 

Before completing the integration, one must specify the nature of the variation of 

temperature with elevation. For example, if we assume that the temperature has a 

constant value T0 over the range z1 to z2 (isothermal conditions), it then follows 

from the above equation that 

 

𝑃2 = 𝑃1𝑒𝑥𝑝 [−
𝑔(𝑧2 − 𝑧1)

𝑅 𝑇0
] 

 

This equation provides the desired pressure–elevation relationship for an 

isothermal layer. As shown in the Fig. 3.11., even for a 3048 m altitude change 

the difference between the constant temperature (isothermal) and the constant 

density (incompressible) results are relatively minor. For nonisothermal 

conditions a similar procedure can be followed if the temperature–elevation 

relationship is known, as is discussed in the following section. 

 

 
Figure 3.11. The relationship between elevation and pressure ratio 
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Example: (a) Estimate the ratio of the pressure at 694 m top of the building to the 

pressure at its base, assuming the air to be at a common temperature of 15 ℃ (b) 

Compare the pressure calculated in part (a) with that obtained by assuming the air 

to be incompressible with 𝛾 = 12 𝑁/𝑚3 at 101 325 Pa (values for air at standard 

sea level conditions). 

 

Solution: For the assumed isothermal conditions, and treating air as a 

compressible fluid, the following equations can be applied to yield. 

 

𝑃2 = 𝑃1𝑒𝑥𝑝 [−
𝑔(𝑧2 − 𝑧1)

𝑅 𝑇0
] 

 

 
𝑃2

𝑃1
= 𝑒𝑥𝑝 [−

𝑔(𝑧2 − 𝑧1)

𝑅 𝑇0
] 

 

 
𝑃2

𝑃1
= 𝑒𝑥𝑝 [−

9.81×694 𝑚

286.9×288
] = 0.921 

 

If the air is treated as an incompressible fluid we can apply  

 

𝑃2 = 𝑃1 − 𝛾(𝑧2 − 𝑧1)  

 
𝑃2

𝑃1
= 1 −

𝛾 (𝑧2 − 𝑧1)

𝑃1
= 1 −

12 ×694

101325
= 0.918 

 

Note that there is little difference between the two results. Since the pressure 

difference between the bottom and top of the building is small, it follows that the 

variation in fluid density is small and, therefore, the compressible fluid and 

incompressible fluid analyses yield essentially the same result. 

 

3.4. Standard Atmosphere 

 

An important application of the following equation relates to the variation in 

pressure in the earth’s atmosphere. Ideally, we would like to have measurements 

of pressure versus altitude over the specific range for the specific conditions 

(temperature, reference pressure) for which the pressure is to be determined. 

However, this type of information is usually not available. Thus, a “standard 

atmosphere” has been determined that can be used in the design of aircraft, 

missiles, and spacecraft, and in comparing their performance under standard 

conditions.  
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∫
𝑑𝑃

𝑃
= ln

𝑃2

𝑃1
= −

𝑔

𝑅
 ∫

𝑑𝑧

𝑇

𝑧2

𝑧1

𝑃2

𝑃1

 

 

The concept of a standard atmosphere was first developed in the 1920s. Several 

important properties for standard atmospheric conditions at sea level are listed in 

Fig.  shows the temperature profile for the U.S. standard atmosphere. As is shown 

in this figure the temperature decreases with altitude in the region nearest the 

earth’s surface (troposphere), then becomes essentially constant in the next layer 

(stratosphere), and subsequently starts to increase in the next layer. Typical events 

that ocur in the atmosphere are shown in the Fig.3.12.  

 

 
 

Figure 3.12. Typical events that ocur in the atmosphere and properties of 

U.S. standar atmodphere at sea level 

 

Since the temperature variation is represented by a series of linear segments, it is 

possible to integrate the above equation to obtain the corresponding pressure 

variation. For example, in the troposphere, which extends to an altitude of about 

11 km the temperature variation is of the form 

 

𝑇 = 𝑇𝑎 − 𝛽 𝑧 
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Where; Ta is the temperature at sea level (z=0) and 𝛽 is the lapse rate (the rate of 

change of temperature with elevation). For the standard atmosphere in the 

troposphere 𝛽 = 0.00650 𝐾/𝑚. From the following equations  

 

∫
𝑑𝑃

𝑃
= ln

𝑃2

𝑃1
= −

𝑔

𝑅
 ∫

𝑑𝑧

𝑇

𝑧2

𝑧1

𝑃2

𝑃1
  and  𝑇 = 𝑇𝑎 − 𝛽 𝑧 

 

We can write the following equation. 

 

𝑃 = 𝑃𝑎 (1 − 
𝛽𝑧

𝑇𝑎
)

𝑔
𝑅𝛽

 

 

Where Pa is the absolute pressure at z=0. With Pa, Ta and g obtained from the 

above table, and with the gas constant or the pressure variation throughout the 

troposphere can be determined from the above equation. This calculation shows 

that at the outer edge of the troposphere, where the temperature is -56.5 ℃ , the 

absolute pressure is about 23 kPa. It is to be noted that modern jetliners cruise at 

approximately this altitude. Pressures at other altitudes are shown in the following 

Fig.3.13. 

 
 

Figure 3.13. Variation of temperature with altitude in the U.S. standard 

atmosphere. 
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