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3-FLUID STATICS 

 

3.5. Measurement of Pressure 

 

Since pressure is a very important characteristic of a fluid field, it is not surprising 

that numerous devices and techniques are used in its measurement. As is noted 

briefly before Chapters, the pressure at a point within a fluid mass will be 

designated as either an absolute pressure or a gage pressure. Absolute pressure 

is measured relative to a perfect vacuum (absolute zero pressure), whereas gage 

pressure is measured relative to the local atmospheric pressure. Thus, a gage 

pressure of zero corresponds to a pressure that is equal to the local atmospheric 

pressure. Absolute pressures are always positive, but gage pressures can be either 

positive or negative depending on whether the pressure is above atmospheric 

pressure (a positive value) or below atmospheric pressure (a negative value). A 

negative gage pressure is also referred to as a suction or vacuum pressure.  

 

The measurement of atmospheric pressure is usually accomplished with a 

mercury barometer, which in its simplest form consists of a glass tube closed at 

one end with the open end immersedin a container of mercury as shown in 

Fig.3.14.  

 

 
 

Figure 3.14. Mercury barometer 

 

The tube is initially filled with mercury (inverted with its open end up) and then 

turned upside down (open end down), with the open end in the container of 
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mercury. The column of mercury will come to an equilibrium position where its 

weight plus the force due to the vapor pressure (which develops in the space above 

the column) balances the force due to the atmospheric pressure. Thus, 

 

𝑃𝑎𝑡𝑚 = 𝛾ℎ + 𝑃𝑣𝑎𝑝𝑜𝑟 

 

Where;  𝛾 is the specific weight of mercury.  

 

For most practical purposes the contribution of the vapor pressure can be 

neglected since it is very small (for mercury 𝑃𝑣𝑎𝑝𝑜𝑟 = 0.16 𝑃𝑎 (𝑎𝑏𝑠)  at 20 ℃) so 

that 𝑃𝑎𝑡𝑚 = 𝛾ℎ . It is conventional to specify atmospheric pressure in terms of the 

height, h, in millimeters or inches of mercury. Note that if water were used instead 

of mercury, the height of the column would have to be approximately 11.33 m 

rather than 0.760 m of mercury for an atmospheric pressure of 1 atm (Fig.3.15). 

The concept of the mercury barometer is an old one, with the invention of this 

device attributed to Evangelista Torricelli in about 1644. 

 

 
Figure 3.15. Atmospheric pressure in mHg and in mH2O 

 

Remember that the atmospheric pressure at a location is simply the weight of the 

air above that location per unit surface area. Therefore, it changes not only with 

elevation but also with weather conditions. The decline of atmospheric pressure 

with elevation has far-reaching ramifications in daily life. For example, cooking 

takes longer at high altitudes since water boils at a lower temperature at lower 

atmospheric pressures. Nose bleeding is a common experience at high altitudes 

since the difference between the blood pressure and the atmospheric pressure is 

larger in this case, and the delicate walls of veins in the nose are often unable to 

withstand this extra stress. 

 

For a given temperature, the density of air is lower at high altitudes, and thus a 

given volume contains less air and less oxygen. So it is no surprise that we tire 

more easily and experience breathing problems at high altitudes. To compensate 

for this effect, people living at higher altitudes develop more efficient lungs. 

Similarly, a 2.0-L car engine will act like a 1.7-L car engine at 1500 m altitude 
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(unless it is turbocharged) because of the 15 percent drop in pressure and thus 15 

percent drop in the density of air (Fig.3.16).  

 

A fan or compressor will displace 15 percent less air at that altitude for the same 

volume displacement rate. Therefore, larger cooling fans may need to be selected 

for operation at high altitudes to ensure the specified mass flow rate. The lower 

pressure and thus lower density also affects lift and drag: airplanes need a longer 

runway at high altitudes to develop the required lift, and they climb to very high 

altitudes for cruising for reduced drag and thus better fuel efficiency. 

 
 

Figure 3.16. At high altitudes, a car engine generates less power and a person 

gets less oxygen because of the lower density of air 

 

Example: Determine the atmospheric pressure at a location where the barometric 

reading is 730 mm Hg and the gravitational acceleration is g= 9.81 m/s2. Assume 

the temperature of mercury to be 10°C, at which its density is 13.570 kg/m3. 

 

Solution: The barometric reading at a location in height of mercury column is 

given. The atmospheric pressure is to be determined. The temperature of mercury 

is assumed to be 10°C. The density of mercury is given to be 13.570 kg/m3.  

 

𝑃𝑎𝑡𝑚 = 𝜌𝑔ℎ = 13570×9.81×0.73 = 97178.84 𝑃𝑎  
 

Note that density changes with temperature, and thus this effect should be 

considered in calculations. 

 

Example: The piston of a vertical piston–cylinder device containing a gas has a 

mass of 50 kg and a cross-sectional area of 0.05 m2, as shown in Fig.  The local 

atmospheric pressure is 96 000 Pa, and the gravitational acceleration is 9.81 m/s2. 

(a) Determine the pressure inside the cylinder. (b) If some heat is transferred to 

the gas and its volume is doubled, do you expect the pressure inside the cylinder 

to change? 
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Solution: A gas is contained in a vertical cylinder with a heavy piston. The 

pressure inside the cylinder and the effect of volume change on pressure are to be 

determined.  

 

a) The gas pressure in the piston–cylinder device depends on the atmospheric 

pressure and the weight of the piston. Drawing the free-body diagram of the piston 

as shown in Fig. and balancing the vertical forces yield. 

 

𝑃𝐴 = 𝑃𝑎𝑡𝑚𝐴 + 𝑊 

Solving for P and substituting, 

𝑃 = 𝑃𝑎𝑡𝑚 +
𝑚𝑔

𝐴
= 96000 +

50×9.81

0.05
= 105810 𝑃𝑎 

 

b) The volume change will have no effect on the free-body diagram drawn in part 

(a), and therefore the pressure inside the cylinder will remain the same. If the gas 

behaves as an ideal gas, the absolute temperature doubles when the volume is 

doubled at constant pressure. 

 

 
 

Example: A mountain lake has an average temperature of and a maximum depth 

of 50 m. The barometric pressure is 630 mm Hg. 𝛾𝑤 = 9804
𝑁

𝑚3
 𝑎𝑡 10 ℃.  𝛾𝐻𝑔 =

133416
𝑁

𝑚3
.  Determine the absolute pressure (in pascals)  at the deepest part of 

the lake. 

 

Solution: The pressure in the lake at any depth, h, is given by the equation 

 

𝑃 = 𝛾ℎ + 𝑃0 
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where P0 is the pressure at the surface. Since we want the absolute pressure, P0 

will be the local barometric pressure expressed in a consistent system of units; 

that is 
𝑃𝑏𝑎𝑟𝑜𝑚𝑒𝑡𝑟𝑖𝑐

𝛾𝐻𝑔
= 630 𝑚𝑚 = 0.630 𝑚 

 

𝑃0 = 𝛾𝐻𝑔ℎ = 133416×0.630 = 84052 𝑃𝑎 

 

𝑃 = 𝛾𝑤ℎ + 𝑃0 = 9804×50 + 84052 = 574252 𝑃𝑎(abs) 

 

This simple example illustrates the need for close attention to the units used in the 

calculation of pressure; that is, be sure to use a consistent unit system, and be 

careful not to add a pressure head (m) to a pressure (Pa). 

 

3.6. Manometry 

 

A standard technique for measuring pressure involves the use of liquid columns 

in vertical or inclined tubes. Pressure measuring devices based on this technique 

are called manometers. The mercury barometer is an example of one type of 

manometer, but there are many other configurations possible, depending on the 

particular application. Three common types of manometers include the 

piezometer tube, the U-tube manometer, and the inclined-tube manometer. 

 

3.6.1. Piezometer Tube 

 

The simplest type of manometer consists of a vertical tube, open at the top, and 

attached to the container in which the pressure is desired, as illustrated in Fig.3.17. 

The figure shows an important device whose operation is based upon this 

principle. It is a sphygmomanometer, the traditional instrument used to measure 

blood pressure. 

 
Figure 3.17. The basic manometry piezometer tube. 
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Since manometers involve columns of fluids at rest, the fundamental equation 

describing their use is  

 

𝑃 = 𝛾ℎ + 𝑃0.  

 

which gives the pressure at any elevation within a homogeneous fluid in terms of 

a reference pressure and the vertical distance h between P an P0. Remember that 

in a fluid at rest pressure will increase as we move downward and will decrease 

as we move upward. Application of this equation to the piezometer tube of the 

above figure indicates that the pressure PA can be determined by a measurement 

of h1 through the relationship. 

 

𝑃𝐴 = 𝛾1ℎ1 

 

Where; 𝛾1 is the specific weight of the liquid in the container. Note that since the 

tube is open at the top, the pressure P0 can be set equal to zero (we are now using 

gage pressure), with the height h1 measured from the meniscus at the upper surface 

to point (1). Since point (1) and point A within the container are at the same 

elevation, PA=P1. 

 

Although the piezometer tube is a very simple and accurate pressure measuring 

device, it has several disadvantages. It is only suitable if the pressure in the 

container is greater than atmospheric pressure 1otherwise air would be sucked 

into the system2, and the pressure to be measured must be relatively small so the 

required height of the column is reasonable. Also, the fluid in the container in 

which the pressure is to be measured must be a liquid rather than a gas. 

 

3.6.2. U-Tube Manometer 

 

To overcome the difficulties noted previously, another type of manometer which 

is widely used consists of a tube formed into the shape of a U, as is shown in Fig. 

The fluid in the manometer is called the gage fluid. To find the pressure PA in 

terms of the various column heights, we start at one end of the system and work 

our way around to the other end, simply utilizing 𝑃 = 𝛾ℎ + 𝑃0. Thus, for the U-

tube manometer shown in Fig.3.18, we will start at point A and work around to 

the open end. The pressure at points A and (1) are the same, and as we move from 

point (1) to (2) the pressure will increase by 𝛾1ℎ1. The pressure at point (2) is 

equal to the pressure at point (3), since the pressures at equal elevations in a 

continuous mass of fluid at rest must be the same. Note that we could not simply 

“jump across” from point (1) to a point at the same elevation in the right-hand 

tube since these would not be points within the same continuous mass of fluid. 

With the pressure at point (3) specified, we now move to the open end where the 

pressure is zero. 
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Figure 3.18. Simple U-tube manometer 

 

As we move vertically upward the pressure decreases by an amount 𝛾2ℎ2. In 

equation form these various steps can be expressed as 

 

𝑃𝐴 + 𝛾1ℎ1 − 𝛾2ℎ2 = 0 

 

and, therefore, the pressure PA can be written in terms of the column heights as 

 

𝑃𝐴 = 𝛾2ℎ2−𝛾1ℎ1 

 

A major advantage of the U-tube manometer lies in the fact that the gage fluid can 

be different from the fluid in the container in which the pressure is to be 

determined. For example, the fluid in A in Fig.3.18 can be either a liquid or a gas. 

If A does contain a gas, the contribution of the gas column, 𝛾1ℎ1, is almost always 

negligible so that, and in this instance becomes 

 
𝑃𝐴 = 𝛾2ℎ2−𝛾1ℎ1   

 

𝑃𝐴 = 𝛾2ℎ2 

 

Thus, for a given pressure the height, h2, is governed by the specific weight, 𝛾2, of 

the gage fluid used in the manometer. If the pressure PA is large, then a heavy gage 

fluid, such as mercury, can be used and a reasonable column height (not too long) 

can still be maintained. Alternatively, if the pressure PA is small, a lighter gage 

fluid, such as water, can be used so that a relatively large column height (which 

is easily read) can be achieved. 
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The U-tube manometer is also widely used to measure the difference in pressure 

between two containers or two points in a given system. Consider a manometer 

connected between containers A and B as is shown in differential U-tube 

manometer Figure 3.19.  

 

 
Figure 3.19. Differential U-tube manometer. 

 

The difference in pressure between A and B can be found by again starting at one 

end of the system and working around to the other end. For example, at A the 

pressure PA, is which is equal to P1, and as we move to point (2) the pressure 

increases by 𝛾1ℎ1. The pressure at P2 is equal to P3 and as we move upward to 

point (4) the pressure decreases by 𝛾2ℎ2 .Similarly, as we continue to move 

upward from point (4) to (5) the pressure decreases by 𝛾3ℎ3. Finally, since they 

are at equal elevations. Thus, 

 

𝑃𝐴 + 𝛾1ℎ1 − 𝛾2ℎ2 − 𝛾3ℎ3 = 𝑃𝐵 

 

Or, as indicated in the figure, we could start at B and work our way around to A 

to obtain the same result. In either case, the pressure difference is 

 

𝑃𝐴 − 𝑃𝐵 = 𝛾2ℎ2 + 𝛾3ℎ3 − 𝛾1ℎ1 

 

When the time comes to substitute in numbers, be sure to use a consistent system 

of units.  
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Example: A closed tank contains compressed air and oil (𝑆𝐺𝑜𝑖𝑙 = 0.92)as is 

shown in Fig. U-tube manometer using Mercury (𝑆𝐺𝐻𝑔 = 13.6) is connected to 

the tank as shown. The column heights are h1=90 cm, h2= 15 cm and h3=23 cm. 

Determine the pressure reading (Pa) of the gage. 

 

 
 

Solution: Following the general procedure of starting at one end of the 

manometer system and working around to the other, we will start at the air–oil 

interface in the tank and proceed to the open end where the pressure is zero. The 

pressure at level (1) is 

 

𝑃1 = 𝑃𝑎𝑖𝑟 + 𝛾𝑜𝑖𝑙(ℎ1 + ℎ2) 

 

This pressure is equal to the pressure at level (2), since these two points are at the 

same elevation in a homogeneous fluid at rest. As we move from level (2) to the 

open end, the pressure must decrease by and at the open end the pressure is zero. 

Thus, the manometer equation can be expressed as 

 

𝑃𝑎𝑖𝑟 + 𝛾𝑜𝑖𝑙(ℎ1 + ℎ2) − 𝛾𝐻𝑔ℎ3 = 0    or 

 

𝑃𝑎𝑖𝑟 + (𝑆𝐺𝑜𝑖𝑙) (𝛾𝐻2𝑂)(ℎ1 + ℎ2) − (𝑆𝐺𝐻𝑔)(𝛾𝐻2𝑂)ℎ3 = 0 

 

For given values 

 

𝑃𝑎𝑖𝑟 = −(𝑆𝐺𝑜𝑖𝑙) (𝛾𝐻2𝑂)(ℎ1 + ℎ2) + (𝑆𝐺𝐻𝑔)(𝛾𝐻2𝑂)ℎ3 

 

𝑃𝑎𝑖𝑟 = −(0.92)(9810)(1.05) + (13.6)(9810)×0.23 = 21209 𝑃𝑎 

 



11 

 

So that   𝑃𝑎𝑖𝑟 = 21209 𝑃𝑎 

 

Note that the air pressure is a function of the height of the mercury in the 

manometer and the depth of the oil (both in the tank and in the tube). It is not just 

the mercury in the manometer that is important. 

 

Example: The volume rate of flow, Q, through a pipe can be determined by means 

of a flow nozzle located in the pipe as illustrated in Fig.  a) Determine an equation 

for PA-PB in terms of the specific weight of the following fluid, 𝛾1, the specific 

weights of the gage fluid, 𝛾2, and the various heightes indicated. b) For 𝛾1 =

9810
𝑁

𝑚3
, 𝛾2 = 15600

𝑁

𝑚3
, ℎ1 = 1.1 𝑚, ℎ2 = 0.6 𝑚 

What is the value of the pressure drop, PA-PB? 

 

 
 

Solution: Although the fluid in the pipe is moving, the fluids in the columns of 

the manometer are at rest so that the pressure variation in the manometer tubes is 

hydrostatic. If we start at point A and move vertically upward to level (1), the 

pressure will decrease by 𝛾1ℎ1and will be equal to the pressure at (2) and at (3). 

We can now move from (3) to (4) where the pressure has been further reduced by 

𝛾2ℎ2.The pressures at levels (4) and (5) are equal, and as we move from (5) to B 

the pressure will increase by 𝛾(ℎ1 + ℎ2). Thus, in equation form 

 

a)  𝑃𝐴 − 𝛾1ℎ1 − 𝛾2ℎ2 + 𝛾1(ℎ1 + ℎ2) = 𝑃𝐵       or       𝑃𝐴 − 𝑃𝐵) = ℎ2(𝛾2 − 𝛾1)  

 

b) The specific value of the pressure drop for the data given is    

 

 𝑃𝐴 − 𝑃𝐵) = 0.6 (15600 − 9810) = 3474 𝑃𝑎 

 

Example: A manometer is used to measure the pressure in a tank. The fluid used 

has a specific gravity of 0.85, and the manometer column height is 65 cm, as 
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shown in Fig.. If the local atmospheric pressure is 90 kPa, determine the absolute 

pressure within the tank. 

 

Solution: The reading of a manometer attached to a tank and the atmospheric 

pressure are given. The absolute pressure in the tank is to be determined. The fluid 

in the tank is a gas whose density is much lower than the density of manometer 

fluid. The specific gravity of the manometer fluid is given to be 0.85. We take the 

standard density of water to be 1000 kg/m3. The density of the fluid is obtained 

by multiplying its specific gravity by the density of water, which is taken to be 

1000 kg/m3: 

 
 

𝑃 = 𝜌𝑔ℎ + 𝑃𝑎𝑡𝑚 = 0.85×1000×9.81×0.65 + 90 000 = 95420 𝑃𝑎 

 

3.6.3. Inclined-Tube Manometer 

 

To measure small pressure changes, a manometer of the type shown in Fig. 3.20 

is frequently used. One leg of the manometer is inclined at an angle 𝜃, and the 

differential reading 𝑙2 is measured along the inclined tube. The difference in 

pressure 𝑃𝐴 − 𝑃𝐵can be expressed as  

 

𝑃𝐴 + 𝛾1ℎ1 − 𝛾2𝑙2𝑠𝑖𝑛𝜃 − 𝛾3ℎ3 = 𝑃𝐵      or        𝑃𝐴 − 𝑃𝐵 = 𝛾2𝑙2𝑠𝑖𝑛𝜃 + 𝛾3ℎ3 −
𝛾1ℎ1   

 

Where; it is to be noted the pressure difference between points (1) and (2) is due 

to the vertical distance between the points, which can be expressed as 𝑙2𝑠𝑖𝑛𝜃. 

Thus, for relatively small angles the differential reading along the inclined tube 

can be made large even for small pressure differences. The inclined-tube 

manometer is often used to measure small differences in gas pressures so that if 

pipes A and B contain a gas then 

 

𝑃𝐴 − 𝑃𝐵 = 𝛾2𝑙2𝑠𝑖𝑛𝜃     𝑙2 =
𝑃𝐴−𝑃𝐵

𝛾2𝑠𝑖𝑛𝜃
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Where the contributions of the gas columns h1 and h3 have been neglected. The 

above equation 2.16 and the Fig. 3.20 show that the differential reading 𝑙2 (for a 

given pressure difference) of the inclined-tube manometer can be increased over 

that obtained with a conventional U-tube manometer by the factor 1/𝑠𝑖𝑛𝜃.  

 
 

 Figure 3.20. Inclined-tube manometer 

 

3.7. Hydrostatic Force on a Plane Surface 

 

The fluid statics deals with problems associated with fluids at rest. The fluid can 

be either gaseous or liquid. Fluid statics is generally referred to as hydrostatics 

when the fluid is a liquid and as aerostatics when the fluid is a gas. In fluid statics, 

there is no relative motion between adjacent fluid layers, and thus there are no 

shear (tangential) stresses in the fluid trying to deform it. The only stress we deal 

with in fluid statics is the normal stress, which is the pressure, and the variation 

of pressure is due only to the weight of the fluid. Therefore, the topic of fluid 

statics has significance only in gravity fields, and the force relations developed 

naturally involve the gravitational acceleration g. The force exerted on a surface 

by a fluid at rest is normal to the surface at the point of contact since there is no 

relative motion between the fluid and the solid surface, and thus no shear forces 

can act parallel to the surface. 

 

Fluid statics is used to determine the forces acting on floating or submerged bodies 

and the forces developed by devices like hydraulic presses and car jacks. The 

design of many engineering systems such as water dams and liquid storage tanks 

requires the determination of the forces acting on the surfaces using fluid statics. 

The complete description of the resultant hydrostatic force acting on a submerged 

surface requires the determination of the magnitude, the direction, and the line of 

action of the force. We consider the forces acting on both plane and curved 

surfaces of submerged bodies due to pressure. 

 

When a surface is submerged in a fluid, forces develop on the surface due to the 

fluid. The determination of these forces is important in the design of storage tanks, 
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ships, dams, and other hydraulic structures. For fluids at rest we know that the 

force must be perpendicular to the surface since there are no shearing stresses 

present. We also know that the pressure will vary linearly with depth as shown in 

the below Fig.3.21 if the fluid is incompressible. 

 

 
 

Figure 3.21. (a) Pressure distribution and resultant hydrostatic force on the 

bottom of an open tank. (b) Pressure distribution on the ends of an open 

tank. 

 

For a horizontal surface, such as the bottom of a liquid-filled tank (Fig.3.21a), the 

magnitude of the resultant force is simply 𝐹𝑅 = 𝑃𝐴 where P is the uniform 

pressure on the bottom and A is the area of the bottom. For the open tank shown, 

𝑃 = 𝛾ℎ . Note that if atmospheric pressure acts on both sides of the bottom, as is 

illustrated, the resultant force on the bottom is simply due to the liquid in the tank. 

Since the pressure is constant and uniformly distributed over the bottom, the 

resultant force acts through the centroid of the area as shown in Fig.3.21a. As 

shown in Fig. 3.21b, the pressure on the ends of the tank is not uniformly 

distributed. Determination of the resultant force for situations such as this is 

presented below. 

 

For the more general case in which a submerged plane surface is inclined, as is 

illustrated in the below figüre, the determination of the resultant force acting on 

the surface is more involved. For the present we will assume that the fluid surface 

is open to the atmosphere. Let the plane in which the surface lies intersect the free 

surface at 0 and make an angle with this surface as in Fig.3.22. The x–y coordinate 

system is defined so that 0 is the origin and y=0 (i.e., the x-axis) is directed along 

the surface as shown. The area can have an arbitrary shape as shown. We wish to 

determine the direction, location, and magnitude of the resultant force acting on 

one side of this area due to the liquid in contact with the area. At any given depth, 

h, the force acting on dA (the differential area of Fig.3.22) is 𝑑𝐹 = 𝛾ℎ𝑑𝐴 and is 

perpendicular to the surface. Thus, the magnitude of the resultant force can be 

found by summing these differential forces over the entire surface.  
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Figure 3.22. Notation for hydrostatic force on an inclined plane surface of 

arbitrary shape. 

 

In equation form 

𝐹𝑅 = ∫ 𝛾ℎ𝑑𝐴 =
𝐴

∫ 𝛾𝑦𝑠𝑖𝑛𝜃𝑑𝐴
𝐴

   

 

Where; ℎ = 𝑦𝑠𝑖𝑛𝜃 For constant 𝛾 𝑎𝑛𝑑 𝜃; 

𝐹𝑅 = 𝛾𝑠𝑖𝑛𝜃 ∫ 𝑦𝑑𝐴
𝐴

 

 

The integral appearing in this equation is the first moment of the area with 

respect to the x axis, so we can write ∫ 𝑦𝑑𝐴
𝐴

= 𝑦𝑐𝐴 
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where is the yc is the y coordinate of the centroid of area A measured from the x 

axis which passes through 0. The last equation can thus be written as 

 

 𝐹𝑅 = 𝛾𝐴𝑦𝑐𝑠𝑖𝑛𝜃 or more simply as  𝐹𝑅 = 𝛾ℎ𝑐𝐴  

 

Where;  hc is the vertical distance from the fluid surface to the centroid of the area. 

Note that the magnitude of the force is independent of the angle 𝜃. As indicated 

by the below Fig.3.23, it depends only on the specific weight of the fluid, the total 

area, and the depth of the centroid of the area below the surface. In effect, the last 

equation indicates that the magnitude of the resultant force is equal to the 

pressure at the centroid of the area multiplied by the total area. Since all the 

differential forces that were summed to obtain are perpendicular to the surface, 

the resultant must also be perpendicular to the surface. 

 
Figure 3.23. The magnitude of the resultant fluid force is equal to the 

pressure acting at the centroid of the area multiplied by the total area. 

 

Although our intuition might suggest that the resultant force should pass through 

the centroid of the area, this is not actually the case. The y coordinate, 𝑦𝑅,   of the 

resultant force can be determined by summation of moments around the x axis. 

That is, the moment of the resultant force must equal the moment of the distributed 

pressure force, or 𝐹𝑅𝑦𝑅 = ∫ 𝑦𝑑𝐹
𝐴

= ∫ 𝛾𝑠𝑖𝑛𝜃𝑦2𝑑𝐴
𝐴

 and,  

 

therefore, since  𝐹𝑅 = 𝛾𝐴𝑦𝑐𝑠𝑖𝑛𝜃        𝑦𝑅 =
∫ 𝑦2𝑑𝐴

𝐴

𝑦𝑐𝐴
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The integral in the numerator is the second moment of the area (moment of 

inertia),𝐼𝑥 , with respect to an axis formed by the intersection of the plane 

containing the surface and the free surface (x axis). Thus, we can write 

𝑦𝑅 =
𝐼𝑥

𝑦𝑐𝐴
 . Use can now be made of the parallel axis theorem to express 𝐼𝑥  as  

𝐼𝑥 = 𝐼𝑥𝑐 + 𝐴𝑦𝑐
2 

 

Where 𝐼𝑥𝑐 is the second moment of the area with respect to an axis passing 

through its centroid and parallel to the x axis. Thus, 

 

𝑦𝑅 =
𝐼𝑥𝑐

𝑦𝑐𝐴
+ 𝑦𝑐  

 

As shown by this equation and the below figure, the resultant force does not pass 

through the centroid but for nonhorizontal surfaces is always below it, since 
𝐼𝑥𝑐

𝑦𝑐𝐴
>

0.  

 
Figure 3.24. The resultant force does not pass through the centroid but for 

nonhorizontal surfaces is always below it 

 

The x coordinate, 𝑥𝑅 ,for the resultant force can be determined in a similar 

manner by summing moments about the y axis, 

𝐹𝑅𝑥𝑅 = ∫ 𝛾𝑠𝑖𝑛𝜃𝑥𝑦𝑑𝐴
𝐴

  and, therefore  𝑥𝑅 =
∫ 𝑥𝑦𝑑𝐴

𝐴

𝑦𝑐𝐴
=

𝐼𝑥𝑦

𝑦𝑐𝐴
 

 

where 𝐼𝑥𝑦 is the product of inertia with respect to the x and y axes. Again, using 

the parallel axis theorem, we can write 

𝑥𝑅 =
𝐼𝑥𝑦𝑐

𝑦𝑐𝐴
+ 𝑥𝑐 

Where; 𝐼𝑥𝑦𝑐  is the product of inertia with respect to an orthogonal coordinate 

system passing through the centroid of the area and formed by a translation of the 

x–y coordinate system. If the submerged area is symmetrical with respect to an 

axis passing through the centroid and parallel to either the x or y axes, the resultant 
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force must lie along the line 𝑥 = 𝑥𝑐 , since 𝐼𝑥𝑦𝑐 is identically zero in this case. The 

point through which the resultant force acts is called the center of pressure. It is 

to be noted from above equations that as 𝑦𝑐  increases the center of pressure moves 

closer to the centroid of the area. Since 𝑦𝑐 = ℎ𝑐/𝑠𝑖𝑛𝜃 , the distance 𝑦𝑐 will 

increase if the depth of submergence, ℎ𝑐 increases, or, for a given depth, the area 

is rotated so that the angle, 𝜃,  decreases. Thus, the hydrostatic force on the right-

hand side of the gate shown in the figure acts closer to the centroid of the gate 

than the force on the left-hand side. Centroidal coordinates and moments of inertia 

for some common areas are given in Fig.3.25. 

 

 
Figure 3.25. Geometric properties of some common shapes (Recall that the 

parallel axis theorem for the product of inertia of an area states that the 

product of inertia with respect to an orthogonal set of axes (x–y coordinate 

system) is equal to the product of inertia with respect to an orthogonal set of 

axes parallel to the original set and passing through the centroid of the area, 

plus the product of the area and the x and y coordinates of the centroid of the 

area. Thus,  𝑰𝒙𝒚 =  𝑰𝒙𝒚𝒄 + 𝑨𝒙𝒄𝒚𝒄. 
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Example: The 4-m-diameter circular gate of Fig. a is located in the inclined wall 

of a large reservoir containing water 𝛾=9810 N/m3. The gate is mounted on a shaft 

along its horizontal diameter, and the water depth is 10 m above the shaft.  

Determine (a) the magnitude and location of the resultant force exerted on the 

gate by the water and (b) the moment that would have to be applied to the shaft 

to open the gate. 

 

 
 

Solution: To find the magnitude of the force of the water we can apply the 

following formula. 𝐹𝑅 = 𝛾ℎ𝑐𝐴 and since the vertical distance from the fluid 

surface to the centroid of the area is 10 m, it follows that 

 

𝐹𝑅 = 9810×10×
𝜋42

4
= 1232761 𝑁 

 

To locate the point (center of pressure) through which 𝐹𝑅acts, we use the 

following equations. 

 

𝑥𝑅 =
𝐼𝑥𝑦𝑐

𝑦𝑐𝐴
+ 𝑥𝑐     𝑦𝑅 =

𝐼𝑥𝑐

𝑦𝑐𝐴
+ 𝑦𝑐  
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For the coordinate system shown, 𝑥𝑅 = 0 since the area is symmetrical, and the 

center of pressure must lie along the diameter A-A.  To obtain 𝑦𝑅 ,  𝐼𝑥𝑐 =
𝜋𝑅4

4
  

and 𝑦𝑐  is shown in Fig. b.   

 

𝑦𝑅 =
(

𝜋

4
)24

(
10

𝑠𝑖𝑛60
)(4𝜋)

+
10

𝑠𝑖𝑛60
= 0.0866 + 11.547 = 11.634 𝑚  

and the distance (along the gate) below the shaft to the center of pressure is 𝑦𝑅 −
𝑦𝑐 = 0.0866 𝑚 

 

We can conclude from this analysis that the force on the gate due to the water has 

a magnitude of 1232761 𝑁  and acts through a point along its diameter A-A at a 

distance of 0.0866 m (along the gate) below the shaft. The force is perpendicular 

to the gate surface as shown in Fig. b. 

 

Example: A heavy car plunges into a lake during an accident and lands at the 

bottom of the lake on its wheels (Fig.). The door is 1.2 m high and 1 m wide, and 

the top edge of the door is 8 m below the free surface of the water. Determine the 

hydrostatic force on the door and the location of the pressure center, and discuss 

if the driver can open the door. 

 

Solution: A car is submerged in water. The hydrostatic force on the door is to be 

determined, and the likelihood of the driver opening the door is to be assessed. 

The density of lake water to be 1000 kg/m3 throughout. The average pressure on 

the door is the pressure value at the centroid (midpoint) of the door and is 

determined to be 

 

𝑃𝑎𝑣𝑒 = 𝑃𝑐 = 𝜌𝑔ℎ𝑐 = 𝜌𝑔 (𝑠 +
𝑏

2
) = 1000×9.81 (8 +

1.1

2
) = 83875.5 𝑃𝑎 

 

Then the resultant hydrostatic force on the door becomes 

 

𝐹𝑅 = 𝑃𝑎𝑣𝑒𝐴 = 83875.5×(1×1.2) = 100650.6 𝑁 

 

The pressure center is directly under the midpoint of the door, and its distance 

from the surface of the lake is determined from below equation 

 

𝑦𝑅 =
𝐼𝑥𝑐

𝑦𝑐𝐴
+ 𝑦𝑐 =

1

12
(1)(1.2)3

8.6×(1×1.2)
+ 8.6 = 0.014 + 8.6 = 8.614 𝑚  

 

 

 



21 

 

3.7.1. Pressure Prism 

 

An informative and useful graphical interpretation can be made for the force 

developed by a fluid acting on a plane rectangular area. Consider the pressure 

distribution along a vertical wall of a tank of constant width b, which contains a 

liquid having a specific weight 𝛾. Since the pressure must vary linearly with depth, 

we can represent the variation as is shown in Fig.3.26 a, where the pressure is 

equal to zero at the upper surface and equal to 𝛾ℎ at the bottom.  

 
Figure 3.26. Pressure prism for vertical rectangular area. 

 

It is apparent from this diagram that the average pressure occurs at the depth h/2 

and therefore the resultant force acting on the rectangular area A= bh is 

𝐹𝑅 = 𝑃𝑎𝑣𝑒𝐴 = 𝛾 (
ℎ

2
) 𝐴 

which is the same result as obtained from 𝐹𝑅 = 𝛾ℎ𝑐𝐴. The pressure distribution 

shown in Fig.3.26a applies across the vertical surface so we can draw the three-

dimensional representation of the pressure distribution as shown in Fig. 3.26b. 

The base of this “volume” in pressure-area space is the plane surface of interest, 

and its altitude at each point is the pressure. This volume is called the pressure 

prism, and it is clear that the magnitude of the resultant force acting on the 

rectangular surface is equal to the volume of the pressure prism. Thus, for the 

prism of Fig. 3.26b the fluid force is 

𝐹𝑅 = 𝑣𝑜𝑙𝑢𝑚𝑒 =
1

2
(𝛾ℎ)(𝑏ℎ) = 𝛾 (

ℎ

2
) 𝐴 

Where bh is the area of the rectangular surface, A. 

 

The resultant force must pass through the centroid of the pressure prism. For the 

volume under consideration the centroid is located along the vertical axis of 
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symmetry of the surface, and at a distance of h/3 above the base (since the centroid 

of a triangle is located at h/3 above its base). This result can readily be shown to 

be consistent with that obtained from Eqs. 𝑦𝑅  𝑎𝑛𝑑 𝑥𝑅. 

 

This same graphical approach can be used for plane rectangular surfaces that do 

not extend up to the fluid surface, as illustrated in Fig.3.27a. In this instance, the 

cross section of the pressure prism is trapezoidal. However, the resultant force is 

still equal in magnitude to the volume of the pressure prism, and it passes through 

the centroid of the volume. Specific values can be obtained by decomposing the 

pressure prism into two parts, ABDE and BCD, as shown in Fig.3.27b. Thus, 

 

𝐹𝑅 = 𝐹1 + 𝐹2 

 

Where the components can readily be determined by inspection for rectangular 

surfaces. The location of 𝐹𝑅  can be determined by summing moments about some 

convenient axis, such as one passing through A. In this instance 

 

𝐹𝑅𝑦𝐴 = 𝐹1𝑦1 + 𝐹2𝑦2  

 

and y1 and y2 can be determined by inspection. 

 

 
Figure 3.27. Graphical representation of hydrostatic forces on a vertical 

rectangular surface 

 

For inclined plane rectangular surfaces the pressure prism can still be developed, 

and the cross section of the prism will generally be trapezoidal, as is shown in 

Fig.3.28. Although it is usually convenient to measure distances along the inclined 

surface, the pressures developed depend on the vertical distances as illustrated. 
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The use of pressure prisms for determining the force on submerged plane areas is 

convenient if the area is rectangular so the volume and centroid can be easily 

determined. However, for other nonrectangular shapes, integration would 

generally be needed to determine the volume and centroid. In these circumstances 

it is more convenient to use the equations developed in the previous section, in 

which the necessary integrations have been made and the results presented in a 

convenient and compact form that is applicable to submerged plane areas of any 

shape. 

 

 
 

Figure 3.28. Pressure variation along an inclined plane area. 

 

The effect of atmospheric pressure on a submerged area has not yet been 

considered, and we may ask how this pressure will influence the resultant force. 

If we again consider the pressure distribution on a plane vertical wall, as is shown 

in Fig.3.29a, the pressure varies from zero at the surface to gh at the bottom. Since 

we are setting the surface pressure equal to zero, we are using atmospheric 

pressure as our datum, and thus the pressure used in the determination of the fluid 

force is gage pressure. If we wish to include atmospheric pressure, the pressure 

distribution will be as is shown in Fig.3.29 b.  

 

We note that in this case the force on one side of the wall now consists of 𝐹𝑅 as a 

result of the hydrostatic pressure distribution, plus the contribution of the 

atmospheric pressure, 𝑃𝑎𝑡𝑚 𝐴 , where A is the area of the surface. However, if we 

are going to include the effect of atmospheric pressure on one side of the wall, we 

must realize that this same pressure acts on the outside surface (assuming it is 

exposed to the atmosphere), so that an equal and opposite force will be developed 

as illustrated in the figure.  
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Thus, we conclude that the resultant fluid force on the surface is that due only to 

the gage pressure contribution of the liquid in contact with the surface— the 

atmospheric pressure does not contribute to this resultant. Of course, if the surface 

pressure of the liquid is different from atmospheric pressure (such as might occur 

in a closed tank), the resultant force acting on a submerged area, A, will be 

changed in magnitude from that caused simply by hydrostatic pressure by an 

amount 𝑃𝑠 𝐴, where 𝑃𝑠 is the gage pressure at the liquid surface (the outside surface 

is assumed to be exposed to atmospheric pressure). 

 

 
 

Figure 3.29. Effect of atmospheric pressure on the resultant force acting on 

a plane vertical wall. 

 

Example: A pressurized tank contains oil (SG=0.90) and has a square, 0.6-m by 

0.6-m plate bolted to its side, as is illustrated in Fig. a. The pressure gage on the 

top of the tank reads 50 kPa, and the outside of the tank is at atmospheric pressure. 

What is the magnitude and location of the resultant force on the attached plate? 

 

Solution: The pressure distribution acting on the inside surface of the plate is 

shown in Fig.b. The pressure at a given point on the plate is due to the air pressure, 

Ps, at the oil surface, and the pressure due to the oil, which varies linearly with 

depth as is shown in the figure. The resultant force on the plate (having an area 

A) is due to the components, where F1 and F2 are due to the rectangular and 

triangular portions of the pressure distribution, respectively.  
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Thus, 𝐹1 = (𝑃𝑠 + 𝛾ℎ1) = (50000 + 0.90×1000×9.81×2)×0.36 = 24357𝑁 

 

𝐹2 = 𝛾 (
ℎ2 − ℎ1

2
) 𝐴 = 0.90×9810 (

0.6

2
) 0.36 = 954 𝑁 

 

The magnitude of the resultant force, 𝐹𝑅  is therefore 𝐹𝑅 = 𝐹1 + 𝐹2 = 24357 +
954 = 25311 𝑁 The vertical location of 𝐹𝑅  can be obtained by summing 

moments around an axis through point O so that 

 

𝐹𝑅𝑦𝑜 = 𝐹1×0.3 + 𝐹2×0.2 

 

𝑦𝑜 =
24357 ×0.3 + 954×0.2

25311
= 0.296 𝑚 

 


