
1 

 

FLUID MECHANICS 
 

 

 

 

 

 

 

 

 
 

 

PROF. DR. METİN GÜNER 

COMPILER 

 

ANKARA UNIVERSITY 

FACULTY OF AGRICULTURE 

DEPARTMENT OF AGRICULTURAL MACHINERY AND 

TECHNOLOGIES ENGINEERING  

 

 

 

 

 

 

 

 



2 

 

4.  ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION 

 

4.1. Newton’s Second Law  

 

As a fluid particle moves from one location to another, it usually experiences an 

acceleration or deceleration. According to Newton’s second law of motion, the 

net force acting on the fluid particle under consideration must equal its mass times 

its acceleration,  F=ma 

 

In this chapter we consider the motion of inviscid fluids. That is, the fluid is 

assumed to have zero viscosity. If the viscosity is zero, then the thermal 

conductivity of the fluid is also zero and there can be no heat transfer (except by 

radiation). 

 

In practice there are no inviscid fluids, since every fluid supports shear stresses 

when it is subjected to a rate of strain displacement. For many flow situations the 

viscous effects are relatively small compared with other effects. As a first 

approximation for such cases it is often possible to ignore viscous effects. For 

example, often the viscous forces developed in flowing water may be several 

orders of magnitude smaller than forces due to other influences, such as gravity 

or pressure differences. For other water flow situations, however, the viscous 

effects may be the dominant ones. Similarly, the viscous effects associated with 

the flow of a gas are often negligible, although in some circumstances they are 

very important. 

 

We assume that the fluid motion is governed by pressure and gravity forces only 

and examine Newton’s second law as it applies to a fluid particle in the form: 

 

(Net pressure force on a particle) + (net gravity force on particle) = (particle 

mass) × (particle acceleration) 

 

The results of the interaction between the pressure, gravity, and acceleration 

provide numerous useful applications in fluid mechanics. 

 

In this chapter we will be concerned with two-dimensional motion like that 

confined to the x–z plane as is shown in Fig.4.1a. Clearly we could choose to 

describe the flow in terms of the components of acceleration and forces in the x 

and z coordinate directions. The resulting equations are frequently referred to as 

a two-dimensional form of the Euler equations of motion in rectangular Cartesian 

coordinates. 
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Figure 4.1. (a) Flow in the x–z plane. (b) Flow in terms of streamline and 

normal coordinates. 

 

The motion of each fluid particle is described in terms of its velocity vector, V, 

which is defined as the time rate of change of the position of the particle. The 

particle’s velocity is a vector quantity with a magnitude (the speed, 𝑽 = |𝑽|) and 

direction. As the particle moves about, it follows a particular path, the shape of 

which is governed by the velocity of the particle. The location of the particle along 

the path is a function of where the particle started at the initial time and its velocity 

along the path. If it is steady flow (i.e., nothing changes with time at a given 

location in the flow field), each successive particle that passes through a given 

point [such as point (1) in above Fig.4.1a] will follow the same path. For such 

cases the path is a fixed line in the x–z plane. Neighboring particles that pass on 

either side of point (1) follow their own paths, which may be of a different shape 

than the one passing through (1). The entire x–z plane is filled with such paths. 

 

For steady flows each particle slides along its path, and its velocity vector is 

everywhere tangent to the path. The lines that are tangent to the velocity vectors 

throughout the flow field are called streamlines. For many situations it is easiest 

to describe the flow in terms of the “streamline” coordinates based on the 

streamlines as are illustrated in last Fig.4.1b. The particle motion is described in 

terms of its distance, s=s(t), along the streamline from some convenient origin 

and the local radius of curvature of the streamline, R=R(t) The distance along the 

streamline is related to the particle’s speed by V=ds/dt and the radius of curvature 

is related to the shape of the streamline. In addition to the coordinate along the 

streamline, s, the coordinate normal to the streamline, n, as is shown in the last 

Fig. 4.1b, will be of use.  

 

To apply Newton’s second law to a particle flowing along its streamline, we must 

write the particle acceleration in terms of the streamline coordinates. By 

definition, the acceleration is the time rate of change of the velocity of the particle, 

a=dV/dt. For two-dimensional flow in the x–z plane, the acceleration has two 

components—one along the streamline, as, the streamwise acceleration, and one 

normal to the streamline, an, the normal acceleration.  
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The streamwise acceleration results from the fact that the speed of the particle 

generally varies along the streamline, V=V(s). For example, in the last Fig.a the 

speed may be 30 m/s at point (1) and 15 m/s at point (2). Thus, by use of the chain 

rule of differentiation, the s component of the acceleration is given by 𝑎𝑠 =
𝑑𝑉

𝑑𝑡
=

(
𝜕𝑉

𝜕𝑠
) (

𝑑𝑠

𝑑𝑡
) = (

𝜕𝑉

𝜕𝑠
) 𝑉. We have used the fact that speed is the time rate of change 

of distance, V=ds/dt. Note that the streamwise acceleration is the product of the 

rate of change of speed with distance along the streamline, (
𝜕𝑉

𝜕𝑠
) and the speed, V. 

Since (
𝜕𝑉

𝜕𝑠
) can be positive, negative, or zero, the streamwise acceleration can, 

therefore, be positive (acceleration), negative (deceleration), or zero (constant 

speed).  

 

The normal component of acceleration, the centrifugal acceleration, is given in 

terms of the particle speed and the radius of curvature of its path. Thus, an=V2/R, 

where both V and R may vary along the streamline. These equations for the 

acceleration should be familiar from the study of particle motion in physics or 

dynamics. The components of acceleration in the s and n directions, and are given 

by 

𝑎𝑠 = 𝑽
𝜕𝑽

𝜕𝒔
   ,  𝑎𝑛 =

𝑉2

𝑅
    

 

Where; R is the local radius of curvature of the streamline, and s is the distance 

measured along the streamline from some arbitrary initial point. In general there 

is acceleration along the streamline (because the particle speed changes along its 

path, 
𝜕𝑉

𝜕𝑠
≠ 0) and acceleration normal to the streamline (because the particle does 

not flow in a straight line, 𝑅 ≠ ∞). Various flows and the accelerations associated 

with them are shown in the figure. For incompressible flow the velocity is 

inversely proportional to the streamline spacing. Hence, converging streamlines 

produce positive streamwise acceleration. To produce this acceleration there must 

be a net, nonzero force on the fluid particle.  

 

To determine the forces necessary to produce a given flow (or conversely, what 

flow results from a given set of forces), we consider the free-body diagram of a 

small fluid particle as is shown in the below Fig.4.2. The particle of interest is 

removed from its surroundings, and the reactions of the surroundings on the 

particle are indicated by the appropriate forces present, F1, F2 and so forth. For 

the present case, the important forces are assumed to be gravity and pressure. 

Other forces, such as viscous forces and surface tension effects, are assumed 

negligible. The acceleration of gravity, g, is assumed to be constant and acts 

vertically, in the negative z direction, at an angle relative to the normal to the 

streamline. 
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Figure 4.2. Isolation of a small fluid particle in a flow field. (Photo courtesy 

of Diana Sailplanes.)  

 

4.2. F=ma Along the Streamline 

 

Consider the small fluid particle of size 𝛿𝑠 𝑏𝑦 𝛿𝑛  in the plane of the figure and 

𝛿𝑦 normal to the figure as shown in the free-body diagram of Fig.4.3. Unit vectors 

along and normal to the streamline are denoted by 𝑠 ̂and �̂� respectively. For steady 

flow, the component of Newton’s second law along the streamline direction, s, 

can be written as 

 

∑ 𝛿𝐹𝑠 =  𝛿𝑚 𝑎𝑠 = 𝛿𝑚 𝑉 
𝜕𝑉

𝜕𝑠
= 𝜌𝛿∀𝑉

𝜕𝑉

𝜕𝑠
 

 

Where ∑ 𝛿𝐹𝑠 represents the sum of the s components of all the forces acting on 

the particle, which has mass 𝛿𝑚 = 𝜌𝛿∀𝑉, and  𝑉 
𝜕𝑉

𝜕𝑠
 is the acceleration in the s 

direction. Here, 𝛿∀= 𝛿𝑠 𝛿𝑛 𝛿𝑦 is the particle volume. The above equation is valid 

for both compressible and incompressible fluids. That is, the density need not be 

constant throughout the flow field.  

 

After a lot of assumptios we can obtain the following equation of motion along 

the streamline direction: 

 

−𝛾 sin 𝜃 −
𝜕𝑃

𝜕𝑠
= 𝜌𝑉

𝜕𝑉

𝜕𝑠
= 𝜌𝑎𝑠 

 

This equation can be rearranged and integrated as follows. 

 

𝑑𝑃 +
1

2
𝜌𝑑(𝑉2) + 𝛾𝑑𝑧 = 0  (along a streamline)  which, for constant acceleration 

of gravity, can be integrated to give 

 

 ∫
𝑑𝑃

𝜌
+

1

2
𝑉2 + 𝑔𝑧 = 𝐶   (along a streamline) 
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Where C is a constant of integration to be determined by the conditions at some 

point on the streamline.  

 
Figure 4.3. Freebody diagram of a fluid particle for which the important 

forces are those due to pressure and gravity. 

 

Since the last two terms are exact differentials. In the case of incompressible flow, 

the first term also becomes an exact differential, and its integration gives 

 

𝑃

𝜌
+

𝑉2

2
+ 𝑔𝑧 = 𝒄𝒐𝒏𝒔𝒕𝒂𝒏𝒕 (𝒂𝒍𝒐𝒏𝒈 𝒂 𝒔𝒕𝒓𝒆𝒂𝒎𝒍𝒊𝒏𝒆) 

 

This is the celebrated Bernoulli equation—a very powerful tool in fluid 

mechanics. In 1738 Daniel Bernoulli 11700–17822 published his Hydrodynamics 

in which an equivalent of this famous equation first appeared.  

 

To use Bernoulli equation correctly we must constantly remember the basic 

assumptions used in its derivation:  

 

1) Viscous effects are assumed negligible,  

2) The flow is assumed to be steady,  

3) The flow is assumed to be incompressible,  

4) The equation is applicable along a streamline.  
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In the derivation of the last equation, we assume that the flow takes place in a 

plane (the x–z plane). In general, this equation is valid for both planar and 

nonplanar (three-dimensional) flows, provided it is applied along the streamline. 

 

An alternate but equivalent form of the Bernoulli equation is obtained by dividing 

each term of the last equation by the specific weight, to obtain 

 

𝑃

𝛾
+

𝑉2

2𝑔
+ 𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 

 

Each of the terms in this equation has the units of energy per weight or length 

(feet, meters) and represents a certain type of head. 

 
𝑃

𝛾
→The pressure term is called the pressure head and represents the height of a 

column of the fluid that is needed to produce the pressure p. 

 
𝑉2

2𝑔
→The velocity term, is the velocity head and represents the vertical distance 

needed for the fluid to fall freely (neglecting friction) if it is to reach velocity V 

from rest. 

 

𝑧 →The elevation term is related to the potential energy of the particle and is 

called the elevation head. 

 

The Bernoulli equation states that the sum of the pressure head, the velocity 

head, and the elevation head is constant along a streamline 

 

The Bernoulli equation can also be written between any two points on the same 

streamline as 

 

𝑃1

𝜌
+

𝑉1
2

2
+ 𝑔𝑧1 =

𝑃2

𝜌
+

𝑉2
2

2
+ 𝑔𝑧2 

 

The Bernoulli equation is obtained from the conservation of momentum for a fluid 

particle moving along a streamline. It can also be obtained from the first law of 

thermodynamics applied to a steady-flow system.  

 

4.3. F=ma Normal to a Streamline 

 

In this section we will consider application of Newton’s second law in a direction 

normal to the streamline. In many flows the streamlines are relatively straight, the 
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flow is essentially one-dimensional, and variations in parameters across 

streamlines (in the normal direction) can often be neglected when compared to 

the variations along the streamline. However, in numerous other situations 

valuable information can be obtained from considering normal to the streamlines. 

For example, the devastating low-pressure region at the center of a tornado can 

be explained by applying Newton’s second law across the nearly circular 

streamlines of the tornado. 

 

A force balance in the direction n normal to the streamline yields the following 

relation applicable across the streamlines for steady, inviscid, incompressible 

flow is  

 

𝑃 + ∫
𝑉2

𝑅
𝑑𝑛 + 𝛾𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑐𝑟𝑜𝑠𝑠 𝑡ℎ𝑒 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒 

 

As with the Bernoulli equation, we must be careful that the assumptions involved 

in the derivation of this equation are not violated when it is used. 

 

For flow along a straight line, 𝑅 → ∞ and thus the last equatin reduces to P/ρ+gz= 

constant or P=-ρgz + constant, which is an expression for the variation of 

hydrostatic pressure with vertical distance for a stationary fluid body. Therefore, 

the variation of pressure with elevation in steady, incompressible flow along a 

straight line is the same as that in the stationary fluid (Fig.4.4). 

 
 

Figure 4.4. The variation of pressure with elevation in steady, incompressible 

flow along a straight line is the same as that in the stationary fluid (but this 

is not the case for a curved flow section). 

 

Similarly, using both terms in the acceleration expression, it can be shown that 

the Bernoulli equation for unsteady, compressible flow is 

 

∫
𝑑𝑃

𝜌
+ ∫

𝜕𝑉

𝜕𝑡
𝑑𝑠 +

𝑉2

2
+ 𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 
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4.4. Static, Stagnation, Dynamic, and Total Pressure 

 

The Bernoulli equation states that the sum of the flow, kinetic, and potential 

energies of a fluid particle along a streamline is constant. Therefore, the kinetic 

and potential energies of the fluid can be converted to flow energy (and vice versa) 

during flow, causing the pressure to change. This phenomenon can be made more 

visible by multiplying the Bernoulli equation by the density ρ, 

 

𝑃 +
1

2
𝜌𝑉2 + 𝜌𝑔𝑧 = 𝑐𝑜𝑛𝑠𝑡𝑎𝑛𝑡 𝑎𝑙𝑜𝑛𝑔 𝑠𝑡𝑟𝑒𝑎𝑚𝑙𝑖𝑛𝑒 

 

Each term in this equation has pressure units, and thus each term represents some 

kind of pressure: 

 

• P is the static pressure (it does not incorporate any dynamic effects); it 

represents the actual thermodynamic pressure of the fluid. This is the same as the 

pressure used in thermodynamics and property tables. 

 

•
1

2
𝜌𝑉2 is the dynamic pressure; it represents the pressure rise when the fluid in 

motion is brought to a stop isentropically. 

 

• 𝜌𝑔𝑧 is the hydrostatic pressure, which is not pressure in a real sense since its 

value depends on the reference level selected; it accounts for the elevation effects, 

i.e., of fluid weight on pressure. 

 

The sum of the static, dynamic, and hydrostatic pressures is called the total 

pressure. Therefore, the Bernoulli equation states that the total pressure along a 

streamline is constant 

 

The sum of the static and dynamic pressures is called the stagnation pressure, 

and it is expressed as 

𝑃2 = 𝑃𝑠𝑡𝑎𝑔 = 𝑃1 +
𝜌𝑉1

2

2
 

 

The pressure at the stagnation point is greater than the static pressure, P1,  by an 

amount 
𝜌𝑉1

2

2
, the dynamic pressure. It can be shown that there is a stagnation point 

on any stationary body that is placed into a flowing fluid (Fig.4.5). Some of the 

fluid flows “over” and some “under” the object. The dividing line (or surface for 

two-dimensional flows) is termed the stagnation streamline and terminates at the 

stagnation point on the body. For symmetrical objects (such as a baseball) the 

stagnation point is clearly at the tip or front of the object. 
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Figure 4.5. Measurement of static and stagnation pressures. 

 

If elevation effects are neglected, the stagnation pressure, is the largest pressure 

obtainable along a given streamline. It represents the conversion of all of the 

kinetic energy into a pressure rise. The stagnation pressure represents the pressure 

at a point where the fluid is brought to a complete stop isentropically. The static, 

dynamic, and stagnation pressures are shown in the below Fig.4.6. When static 

and stagnation pressures are measured at a specified location, the fluid velocity at 

that location can be calculated from 

 

𝑉1 = 𝑉 = √
2(𝑃2 − 𝑃1)

𝜌
 

 

This equation is useful in the measurement of flow velocity when a combination 

of a static pressure tap and a Pitot tube is used, as illustrated in Fig.4.6. 

 

 
Figure 4.6. The static, dynamic, and stagnation pressures 
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A static pressure tap is simply a small hole drilled into a wall such that the plane 

of the hole is parallel to the flow direction. It measures the static pressure. A Pitot 

tube is a small tube with its open end aligned into the flow so as to sense the full 

impact pressure of the flowing fluid. It measures the stagnation pressure. In 

situations in which the static and stagnation pressure of a flowing liquid are 

greater than atmospheric pressure, a vertical transparent tube called a piezometer 

tube (or simply a piezometer) can be attached to the pressure tap and to the Pitot 

tube.The liquid rises in the piezometer tube to a column height (head) that is 

proportional to the pressure being measured. If the pressures to be measured are 

below atmospheric, or if measuring pressures in gases, piezometer tubes do not 

work. However, the static pressure tap and Pitot tube can still be used, but they 

must be connected to some other kind of pressure measurement device such as a 

U-tube manometer or a pressure transducer. Sometimes it is convenient to 

integrate static pressure holes on a Pitot probe. The result is a Pitot-static probe, 

as shown in the below Fig.4.7. A Pitot-static probe connected to a pressure 

transducer or a manometer measures the dynamic pressure (and thus fluid 

velocity) directly. 

  
 

Figure 4.7. Close-up of a Pitot-static probe, showing the stagnation pressure 

hole and two of the five static circumferential pressure holes 

 

As shown in Fig.4.7. two concentric tubes are attached to two pressure gages (or 

a differential gage) so that the values of P3 and P4 (or the difference P3-P4) can be 

determined. The center tube measures the stagnation pressure at its open tip. If 

elevation changes are negligible, 

 

𝑃3 = 𝑃 +
1

2
𝜌𝑉2 

 

Where p and V are the pressure and velocity of the fluid upstream of point (2). 

The outer tube is made with several small holes at an appropriate distance from 
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the tip so that they measure the static pressure. If the effect of the elevation 

difference between (1) and (4) is negligible, then P=P4=P1  

 

By combining these two equations we see that 

𝑃3 − 𝑃4 =
1

2
𝜌𝑉2 which can be rearranged to give 𝑉 = √

2(𝑃3−𝑃4)

𝜌
 

 

Example: A piezometer and a Pitot tube are tapped into a horizontal water pipe, 

as shown in Fig. to measure static and stagnation (static + dynamic) pressures. For 

the indicated water column heights, determine the velocity at the center of the 

pipe. The flow is steady and incompressible.  

 
 

Solution:  We take points 1 and 2 along the centerline of the pipe, with point 1 

directly under the piezometer and point 2 at the tip of the Pitot tube. This is a 

steady flow with straight and parallel streamlines, and the gage pressures at points 

1 and 2 can be expressed as 

 

P1=ρg(h1+h2)    P2=ρg(h1+h2+h3) 

 

Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the application 

of the Bernoulli equation between points 1 and 2 gives 

 

𝑃1

𝜌𝑔
+

𝑉1
2

2𝑔
+ 𝑧1 =

𝑃2

𝜌𝑔
+

𝑉2
2

2𝑔
+ 𝑧2 →

𝑉1
2

2𝑔
=

𝑃2 − 𝑃1

𝜌𝑔
 

 

Substituting the P1 and P2 expressions gives 

 

𝑉1
2

2𝑔
=

𝑃2 − 𝑃1

𝜌𝑔
=

𝜌𝑔(ℎ1 + ℎ2 + ℎ3) − 𝜌𝑔(ℎ1 + ℎ2)

𝜌𝑔
= ℎ3 

 

Solving for V1 and substituting, 

𝑉1 = √2×9.81×0.12 = 1.53 𝑚/𝑠 

 

Note that to determine the flow velocity, all we need is to measure the height of 

the excess fluid column in the Pitot tube. 


