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4.  ELEMENTARY FLUID DYNAMICS -THE BERNOULLI EQUATION 

 

4.5.2.1. Cavitation 

 

If the differences in velocity are considerable, the differences in pressure can also 

be considerable. For flows of liquids, this may result in cavitation, a potentially 

dangerous situation that results when the liquid pressure is reduced to the vapor 

pressure and the liquid “boils.” 

 

One way to produce cavitation in a flowing liquid is noted from the Bernoulli 

equation. If the fluid velocity is increased (for example, by a reduction in flow 

area as shown in Fig.4.13) the pressure will decrease. This pressure decrease 

1needed to accelerate the fluid through the constriction) can be large enough so 

that the pressure in the liquid is reduced to its vapor pressure. A simple example 

of cavitation can be demonstrated with an ordinary garden hose. If the hose is 

“kinked,” a restriction in the flow area in some ways analogous to that shown in 

Fig. 4.13 will result. The water velocity through this restriction will be relatively 

large. With a sufficient amount of restriction the sound of the flowing water will 

change—a definite “hissing” sound is produced. This sound is a result of 

cavitation. 

 
Figure 4.13. Pressure variation and cavitation in a variable area pipe. 

 

4.5.3. Flowrate Measurement 

 



3 

 

Many types of devices using principles involved in the Bernoulli equation have 

been developed to measure fluid velocities and flowrates. The Pitot-static tube is 

an example. Other examples discussed below include devices to measure 

flowrates in pipes and conduits and devices to measure flowrates in open 

channels. In this chapter we will consider “ideal” flow meters—those devoid of 

viscous, compressibility, and other “real-world” effects. Our goal here is to 

understand the basic operating principles of these simple flow meters 

 

An effective way to measure the flowrate through a pipe is to place some type of 

restriction within the pipe as shown in Fig.4.14 and to measure the pressure 

difference between the low-velocity, high-pressure upstream section (1), and the 

high-velocity, low-pressure downstream section (2). Three commonly used types 

of flow meters are illustrated: the orifice meter, the nozzle meter, and the Venturi 

meter. The operation of each is based on the same physical principles—an 

increase in velocity causes a decrease in pressure. The difference between them 

is a matter of cost, accuracy, and how closely their actual operation obeys the 

idealized flow assumptions. The theoretical flowrate for above flow meters can 

be written as the following. 

 

𝑄 = 𝐴2√
2(𝑃2 − 𝑃1)

𝜌[1 − (𝐴2/𝐴1)
2]
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Figure 4.14. Typical devices for measuring flowrate in pipes. 

 

4.6. Summary 

 

Some of the important equations in this chapter are: 
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EXAMPLES 

 

Example: In cold climates, water pipes may freeze and burst if proper precautions 

are not taken. In such an occurrence, the exposed part of a pipe on the ground 

ruptures, and water shoots up to 34 m. Estimate the gage pressure of water in the 

pipe. State your assumptions and discuss if the actual pressure is more or less than 

the value you predicted. The flow is steady, incompressible, and irrotational with 

negligible frictional effects (so that the Bernoulli equation is applicable). The 

water pressure in the pipe at the burst section is equal to the water main pressure. 

Friction between the water and air is negligible. The irreversibilities that may 

occur at the burst section of the pipe due to abrupt expansion are negligible. We 

take the density of water to be 1000 kg/m3. 

 

Solution: This problem involves the conversion of flow, kinetic, and potential 

energies to each other without involving any pumps, turbines, and wasteful 

components with large frictional losses, and thus it is suitable for the use of the 

Bernoulli equation. The water height will be maximum under the stated 

assumptions. The velocity inside the hose is relatively low (V1 ≅ 0) and we take 

the burst section of the pipe as the reference level (z1 = 0). At the top of the water 

trajectory V2 = 0,  and atmospheric pressure pertains. Then the Bernoulli equation 

simplifies to 
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Solving for P1,gage and substituting, 

 

 
 

Therefore, the pressure in the main must be at least 334 kPa above the atmospheric 

pressure. The result obtained by the Bernoulli equation represents a limit, since 

frictional losses are neglected, and should be interpreted accordingly. It tells us 

that the water pressure (gage) cannot possibly be less than 334 kPa (giving us a 

lower limit), and in all likelihood, the pressure will be much higher. 

 

 
Example: A Pitot-static probe is used to measure the velocity of an aircraft flying 

at 3000 m. If the differential pressure reading is 3 kPa, determine the velocity of 

the aircraft. The air flow over the aircraft is steady, incompressible, and 

irrotational with negligible frictional effects (so that the Bernoulli equation is 

applicable).  Standard atmospheric conditions exist. The wind effects are 

negligible. The density of the atmosphere at an elevation of 3000 m is ρ= 0.909 

kg/m3. 

 

Solution: We take point 1 at the entrance of the tube whose opening is parallel to 

flow, and point 2 at the entrance of the tube whose entrance is normal to flow. 

Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the application 

of the Bernoulli equation between points 1 and 2 gives 
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Solving for V1 and substituting, 

 
 

Note that the velocity of an aircraft can be determined by simply measuring the 

differential pressure on a Pitot-static probe. 

 
 

Example: While traveling on a dirt road, the bottom of a car hits a sharp rock and 

a small hole develops at the bottom of its gas tank. If the height of the gasoline in 

the tank is 30 cm, determine the initial velocity of the gasoline at the hole. Discuss 

how the velocity will change with time and how the flow will be affected if the 

lid of the tank is closed tightly. The flow is steady, incompressible, and 

irrotational with negligible frictional effects (so that the Bernoulli equation is 

applicable). The air space in the tank is at atmospheric pressure.  The splashing of 

the gasoline in the tank during travel is not considered. 

 

Solution: This problem involves the conversion of flow, kinetic, and potential 

energies to each other without involving any pumps, turbines, and wasteful 

components with large frictional losses, and thus it is suitable for the use of the 

Bernoulli equation. We take point 1 to be at the free surface of gasoline in the tank 

so that P1 = Patm (open to the atmosphere) V1 ≅ 0 (the tank is large relative to the 

outlet), and z1 = 0.3 m and z2 = 0 (we take the reference level at the hole. Also, P2 

= Patm (gasoline discharges into the atmosphere). Then the Bernoulli equation 

simplifies to 

 

 
Solving for V2 and substituting,  
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Therefore, the gasoline will initially leave the tank with a velocity of 2.43 m/s. 

The Bernoulli equation applies along a streamline, and streamlines generally do 

not make sharp turns. The velocity will be less than 2.43 m/s since the hole is 

probably sharp-edged and it will cause some head loss. As the gasoline level is 

reduced, the velocity will decrease since velocity is proportional to the square root 

of liquid height. If the lid is tightly closed and no air can replace the lost gasoline 

volume, the pressure above the gasoline level will be reduced, and the velocity 

will be decreased. 

 
 

Example: A piezometer and a Pitot tube are tapped into a 3-cm diameter 

horizontal water pipe, and the height of the water columns are measured to be 20 

cm in the piezometer and 35 cm in the Pitot tube (both measured from the top 

surface of the pipe). Determine the velocity at the center of the pipe. The flow is 

steady, incompressible, and irrotational with negligible frictional effects in the 

short distance between the two pressure measurement locations (so that the 

Bernoulli equation is applicable). 

 

Solution: We take points 1 and 2 along the centerline of the pipe, with point 1 

directly under the piezometer and point 2 at the entrance of the Pitot-static probe 

(the stagnation point). This is a steady flow with straight and parallel streamlines, 

and thus the static pressure at any point is equal to the hydrostatic pressure at that 

point. Noting that point 2 is a stagnation point and thus V2 = 0 and z1 = z2, the 

application of the Bernoulli equation between points 1 and 2 gives 
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Substituting the P1 and P2 expressions give 

 

 
 

Solving for V1 and substituting, 

 

 
Note that to determine the flow velocity, all we need is to measure the height of 

the excess fluid column in the Pitot-static probe. 

 

Example: A pressurized tank of water has a 10-cm-diameter orifice at the bottom, 

where water discharges to the atmosphere. The water level is 3 m above the outlet. 

The tank air pressure above the water level is 300 kPa (absolute) while the 

atmospheric pressure is 100 kPa. Neglecting frictional effects, determine the 

initial discharge rate of water from the tank. We take the density of water to be 

1000 kg/m3. 
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Solution: We take point 1 at the free surface of the tank, and point 2 at the exit of 

orifice, which is also taken to be the reference level (z2 = 0). Noting that the fluid 

velocity at the free surface is very low (V1 ≅ 0) and water discharges into the 

atmosphere (and thus P2 = Patm), the Bernoulli equation simplifies to 

 
Solving for V2 and substituting, the discharge velocity is determined to 

 

 
Then the initial rate of discharge of water becomes 

 
Note that this is the maximum flow rate since the frictional effects are ignored. 

Also, the velocity and the flow rate will decrease as the water level in the tank 

decreases. 

 

Example: The water in a 10-m-diameter, 2-m-high aboveground swimming pool 

is to be emptied by unplugging a 3-cmdiameter, 25-m-long horizontal pipe 

attached to the bottom of the pool. Determine the maximum discharge rate of 

water through the pipe. Also, explain why the actual flow rate will be less. 

 

Solution: We take point 1 at the free surface of the pool, and point 2 at the exit of 

pipe. We take the reference level at the pipe exit (z2 = 0). Noting that the fluid at 

both points is open to the atmosphere (and thus P1 = P2 = Patm) and that the fluid 

velocity at the free surface is very low (V1 ≅ 0), the Bernoulli equation between 

these two points simplifies to 

 

 
 

The maximum discharge rate occurs when the water height in the pool is a 

maximum, which is the case at the beginning and thus z1 = h. Substituting, the 

maximum flow velocity and discharge rate become 
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Example: Air at 110 kPa and 50°C flows upward through a 6-cm-diameter 

inclined duct at a rate of 45 L/s. The duct diameter is then reduced to 4 cm through 

a reducer. The pressure change across the reducer is measured by a water 

manometer. The elevation difference between the two points on the pipe where 

the two arms of the manometer are attached is 0.20 m. Determine the differential 

height between the fluid levels of the two arms of the manometer. We take the 

density of water to be ρ = 1000 kg/m3. The gas constant of air is R = 0.287 

kPa⋅m3/kg⋅K. 

 
 

Solution: We take points 1 and 2 at the lower and upper connection points, 

respectively, of the two arms of the manometer, and take the lower connection 

point as the reference level. Noting that the effect of elevation on the pressure 

change of a gas is negligible, the application of the Bernoulli equation between 

points 1 and 2 gives 
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Substituting, 

 

 
 

The differential height of water in the manometer corresponding to this pressure 

change is determined from   

 

to be 

 
When the effect of air column on pressure change is considered, the pressure 

change becomes 

 

 

 
 

This difference between the two results (612 and 614 Pa) is less than 1%. 

Therefore, the effect of air column on pressure change is, indeed, negligible as 

assumed. In other words, the pressure change of air in the duct is almost entirely 

due to velocity change, and the effect of elevation change is negligible. Also, if 

we were to account for the Δz of air flow, then it would be more proper to account 

for the Δz of air in the manometer by using ρwater - ρair instead of ρwater when 

calculating h. The additional air column in the manometer tends to cancel out the 

change in pressure due to the elevation difference in the flow in this case. 
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Example: The water level in a tank is 20 m above the ground. A hose is connected 

to the bottom of the tank, and the nozzle at the end of the hose is pointed straight 

up. The tank cover is airtight, and the air pressure above the water surface is 2 atm 

gage. The system is at sea level. Determine the maximum height to which the 

water stream could rise. We take the density of water to be 1000 kg/m3. 

 
 

Solution: We take point 1 at the free surface of water in the tank, and point 2 at 

the top of the water trajectory. Also, we take the reference level at the bottom of 

the tank. At the top of the water trajectory V2 = 0, and atmospheric pressure 

pertains. Noting that z1 = 20 m, P1,gage = 2 atm, P2 = Patm, and that the fluid 

velocity at the free surface of the tank is very low (V1 ≅ 0), the Bernoulli equation 

between these two points simplifies to 
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Substituting, 

 

 
 

 
 

Example: A Pitot-static probe connected to a water manometer is used to measure 

the velocity of air. If the deflection (the vertical distance between the fluid levels 

in the two arms) is 7.3 cm, determine the air velocity. Take the density of air to 

be 1.25 kg/m3. We take the density of water to be ρ = 1000 kg/m3. The density of 

air is given to be 1.25 kg/m3. 

 
 

Solution: We take point 1 on the side of the probe where the entrance is parallel 

to flow and is connected to the static arm of the Pitot-static probe, and point 2 at 

the tip of the probe where the entrance is normal to flow and is connected to the 

dynamic arm of the Pitot-static probe. Noting that point 2 is a stagnation point and 

thus V2 = 0 and z1 = z2, the application of the Bernoulli equation between points 1 

and 2 gives 
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The pressure rise at the tip of the Pitot-static probe is simply the pressure change 

indicated by the differential water column of the manometer, 

 

 
 

Combining Eqs. (1) and (2) and substituting, the flow velocity is determined to be 

 

 
 

 

 
 

Example: In a hydroelectric power plant, water enters the türbine nozzles at 700 

kPa absolute with a low velocity. If the nozzle outlets are exposed to atmospheric 

pressure of 100 kPa, determine the maximum velocity to which water can be 

accelerated by the nozzles before striking the turbine blades. We take the density 

of water to be ρ = 1000 kg/m3. 

 

Solution: We take points 1 and 2 at the inlet and exit of the nozzle, respectively. 

Noting that V1 ≅ 0 and z1 = z2, the application of the Bernoulli equation between 

points 1 and 2 gives 
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Substituting the given values, the nozzle exit velocity is determined to be 

 

 
This is the maximum nozzle exit velocity, and the actual velocity will be less 

because of friction between water and the walls of the nozzle. 

 
 

 

 

 

 

 

 

 

 

 

 

 

 

 


